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Abstract

This paper studies the dynamics of international trade from the perspective of knowl-

edge spillover. Building into an idea-flow model the industry dimension, I integrate four

channels of knowledge spillover: each firm could learn from domestic producers as well as

foreign sellers, and learning is both intra- and inter-industry. The theoretical framework

yields the law of motion of industry-level productivity across countries, capturing strong

interdependence of evolution of comparative advantage. I calibrate the model to a large

sample of countries. My quantitative results capture important patterns in the data: strong

convergence in comparative advantage and substantial mobility in specialization. Based on

the law of motion, my decomposition exercise suggests international and inter-industry

channels play a major role in knowledge spillover. Various measures are proposed to iden-

tify the “key player”, that is, the country or country-industry pair that contributes most

to global productivity growth, in the knowledge di↵usion network. The calibrated model

also suggests dynamic gains from trade are at least one-third of static gains from trade.
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1 Introduction

The last few decades have painted an intriguing picture of specialization dynamics. A number of

economies have seen dramatic change of their export baskets. China’s top export industry shifted

from children’s toys to computers within less than twenty years (Hanson, 2012). Since 1970s,

South Korea has managed to establish their leading position in the shipbuilding industry from

scratch. Frequent turnover of main export industries is not just confined to Eastern Asian miracle

economies. African countries have also witnessed substantial mobility in their specialization for

the last two decades (Easterly and Reshef, 2010). The most salient feature of specialization

dynamics is the strong convergence in comparative advantage. Countries that initially exports

little in an industry tends to expand its export activity faster in that industry. This convergence

pattern has been documented across di↵erent country groups and sample periods for a variety

of measures of comparative advantage. Given its impact on global economic growth (Rodrik,

2013b) and cross-country income distribution, it is important to understand what is driving

specialization dynamics in a quantitative manner.

This paper studies dynamics of specialization patterns, unconditional convergence in compar-

ative advantage in particular, from the perspective of knowledge di↵usion. In an interdependent

world, knowledge di↵usion is ubiquitous. Unprecedented volume of international trade makes it

possible for people across the world to be exposed to new products, designs, and ideas therein

on a daily basis. Knowledge di↵usion is hardly bounded by industrial classifications. The rapid

development of the electronic technology in the last twenty years has profound impact on vir-

tually all sectors of the economy, much beyond its own narrowly defined industry. Complexity

of technology di↵usion calls for a framework in which we can study how the rise of new ideas

impacts production across countries and industries through international trade, thereby shedding

light on the nexus between growth and trade dynamism.

To account for knowledge di↵usion in both geographical and technological spaces, I build

up a dynamic model featuring both international and inter-industry flows of ideas. The cross-

sectional setting is a fully-fledged multi-country multi-industry Ricardian model of international

trade with multiple factors and input-output linkages in light of Caliendo and Parro (2014)

and Levchenko and Zhang (2016). Industrial productivity, as well as factor endowment, shapes

specialization pattern across countries. Along the time dimension, I build into a model of global

idea flows (Buera and Oberfield, 2016) the industry dimension. Importantly, flows of ideas go

hand in hand with flows of goods. By putting industries into play, I am able to integrate four

channels of idea flows: each firm could learn from domestic producers as well as foreign exporters,

and technology spillover is both intra- and inter-industry. The theoretical framework yields a

law of motion of industry-level productivity across countries, capturing strong interdependence

of evolution of comparative advantage.

The law of motion of industry-level productivity is amenable for empirical implementation.

Using production and trade data, I calibrate this structural model of knowledge di↵usion for

a sample of 32 OECD and 40 non-OECD countries. The calibrated model reproduces strong
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convergence in comparative advantage and its magnitude is in line with what we observe in the

data for a variety of measures. This demonstrates that technology di↵usion serves as a plausible

candidate to quantitatively explain convergence in comparative advantage (Hwang, 2006; Rodrik,

2013b; Levchenko and Zhang, 2016), echoing the earlier theoretical prediction that a laggard

country tends to grow faster provided that it has equal access to technology. Furthermore, the

model generates substantial degree of mobility in specialization especially among non-OECD

countries. This is consistent with empirical findings by Proudman and Redding (2000), Redding

(2002), and Hanson et al. (2016). A growing body of work documents that what underlies trade

dynamism is convergence in comparative advantage, but nevertheless silent on its sources. This

paper fills this void by providing a quantitative exploration from the perspective of knowledge

di↵usion through trade.

Second, my empirical analysis quantifies the contribution of each channel of technology di↵u-

sion to industry-level productivity growth across countries. According to my calibration, inter-

national technology di↵usion on average plays a more important role than domestic technology

di↵usion, and inter-industry technology di↵usion contributes more than half to the overall pro-

ductivity growth. This result stands in contrast with Keller (2002b) that also integrates four

channels of knowledge di↵usion. He documents that domestic knowledge di↵usion within the

same industry plays a major role in shaping industrial productivity. Despite the similarity in

di↵usion channels, the di↵erence in our decomposition exercise needs to be interpreted with great

caution, because this paper focuses on transitional dynamics and therefore productivity growth

at the industry level, while Keller (2002b) focuses on level terms of TFP and thus the steady

state of the global production pattern. In this sense, this work complements Keller (2002b) in

tracing sources of productivity growth.

Moreover, an important implication of the model is that it maps the directly observable trade

network to an underlying network of idea flows. Employed with the full structure of idea flows,

I identify the “key player” in the global technology di↵usion, that is, the country or country-

industry pair that contributes most to the global productivity growth. The model also suggests

that distribution of each country’s contribution becomes less skewed over time, as emerging

market economies play an increasingly larger role.

This paper further joins the recent debate on gains from trade (Arkolakis et al., 2012). Using

the calibrated law of motion of industrial productivity, I compute the dynamic gains from trade

as additional increase in real income when a country moves from autarky to open trade and

enjoys higher productivity growth. The additional gains on average account for at least 8% of

GDP, demonstrating that the dynamic welfare gains proposed by the original work of Buera and

Oberfield (2016) are substantial.

From a modeling point of view, this paper is closely related to the recent theoretical literature

on “idea flows”. In this class of models, agent-to-agent interaction is the engine of growth (Lucas

and Moll, 2014; Perla and Tonetti, 2014). Each period, an agent is randomly matched with

another agent in the economy and potentially adopts the new insight from the matched agent.

Economic growth is thereby characterized by a traveling wave of productivity distribution within
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the economy. Extending this framework into the open-economy setting, a series of theoretical

work studies how dynamic gains from trade arise from learning from foreign sellers (Alvarez et

al., 2013), change of timing of technology adoption (Perla et al., 2015), and dynamic selection

e↵ects due to entry-exit decision (Sampson, 2016). My model builds upon Buera and Oberfield

(2016) which itself nests Kortum (1997) and Alvarez et al. (2013). The key departure from this

literature is to open up the industry dimension. Agents across di↵erent industries are allowed to

meet each other and exchange insights. The traveling wave of an industry is therefore determined

by productivity distributions of those industries from which this industry draws insights.

The cross-sectional setting of my model closely follows Caliendo and Parro (2014) and Levchenko

and Zhang (2016). Following Eaton and Kortum (2002), a large literature employs quantifiable

trade models to study how Ricardian comparative advantage shapes international trade. Shikher

(2011) and Costinot et al. (2012) first extend the Eaton-Kortum framework into a multi-industry

setting. Caliendo and Parro (2014) and Levchenko and Zhang (2016) further extend the frame-

work by incorporating realistic input-output linkages (Acemoglu et al., 2012) and multiple factors

of production. Though their theoretical predecessors are dynamic growth models (Kortum, 1997;

Eaton and Kortum, 1999), most of the existing structural trade models are static. A recent ex-

ception is Somale (2014) that studies the complex two-way relationship between productivity

growth and trade pattern in an innovation-based framework. My work adds to this literature by

endogenizing industry-level trade patterns through the lens of technology di↵usion.

This paper draws insights from the literature that examines economic consequences of tech-

nological relatedness of industries spurred by Ja↵e (1986). Based on co-export structure, Hidalgo

et al. (2007) formalize the concept of the “product space” and document strong path dependence

of trade patterns. Follow-up work by Kali et al. (2012) study the structure of the product space

in relation to economic growth using cross-country regressions. Cai and Li (2014) builds into

an innovation-based growth model industrial linkages of knowledge creation. Using patent cita-

tion data, they demonstrate that industrial linkage is important in explaining firms’ patenting

behavior.

This paper is also related to an earlier literature on international technology di↵usion1. This

strand of literature studies the extent to which technology di↵uses across borders via imports,

exports, and foreign direct investment. A prominent example is Coe and Helpman (1995). They

document that a country’s R&D expenditures have large e↵ects on productivity of its trade

partners. Keller (2002a) further demonstrates international spillover of R&D expenditures is

largely localized and correlated with non-trade variables such as language. Much of the existing

empirical analysis relies on availability of cross-country sectoral R&D data, and as a result,

analysis is usually carried out across a small sample of industrialized economies. To motivate

empirical framework, the existing work typically draws insights from innovation-based growth

models Grossman and Helpman (1993). In contrast, this paper complements the literature by

taking a di↵erent theoretical underpinning. Although this paper is agnostic about sources of

knowledge creation, it introduces a much finer process of knowledge di↵usion that is micro-

1Keller (2004) provides an excellent review.
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founded by firm-to-firm interactions. By focusing on the very nature of technology spillover,

my theoretical framework is more suitable for analyzing technology catchup of the developing

world where most countries are technology recipients rather than creators. Because the law of

motion of industry-level productivity derived in this paper depends exclusively on variables that

can be constructed by using trade and production data, I am also freed from using R&D data

and therefore a much larger sample of developing countries can be included in my quantitative

exercise.

Lastly, this paper adds to the discussion of trade and industrial policies. As a seminal

work, Hausmann and Rodrik (2003) highlight the problem of appropriability associated with

localizing foreign technology. On the contrary, recent case studies on export pioneers (Sabel et al.,

2012) suggest that coordination problem is the foremost issue of initiating new export activities.

This paper takes a macro perspective on di↵usion barriers by o↵ering a systematic industry-

level comparison between international and domestic knowledge spillover. A related but more

controversial discussion is about whether what a country exports matters for its future economic

growth. Cross-country regressions by Hausmann et al. (2007) suggest that a country tends to

achieve higher economic growth if its export basket biases towards those of rich countries. This

finding spurs a huge debate on industrial policy2. My work joins this debate by quantitatively

investigating how a country’s production structure and import bundles impact its industrial

productivity growth.

The rest of the paper is structured as follows. Section 2 presents the motivating evidence

of the paper: specialization dynamics and unconditional convergence. Section 3 describes the

model, solves the instantaneous equilibrium, and derives the law of motion of industry-level

productivity. Section 4 describes sample construction and the two-step estimation strategy.

Section 5 presents main results and demonstrates the internal validity of the model. Section 6

discusses the implications of the model. Section 7 concludes.

2 Motivating Evidence

2.1 Specialization Dynamics

The first set of evidence concerns change of a country’s specialization. Earlier work by Redding

(2002) examines evolution of export baskets of seven OECD countries. Employed with an em-

pirical framework of distribution dynamics, he finds substantial mobility in specialization. This

finding is further extended by Hanson et al. (2016) in a gravity-equation framework. In a 20-year

window, they find the turnover rate of the top 5% industries is about 60%. Figure 1 plots for four

representative countries export shares3 of the top 10 export industries and compares with those

2A collection of critique can be found in Lederman and Maloney (2012).
3Export share is admittedly a crude measure, but this pattern is robust under more sophisticated measures

of export capabilities. Another criticism is that change in gross exports may simply reflect change in vertical
specialization, but similar change in specialization is also found in trade in value-added using TiVA data from
OECD-WTO.
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values in 1990. Consistent with the literature, there is substantial turnover among emerging

market economies and developing countries. The export basket of USA is relatively stable, but

the change of export shares is also quite prominent for the top two industries. Figure 2 conducts

a similar exercise as Hanson et al. (2016). The small values on the diagonal suggest that many

leading export industries in 2010 did not or only exported a little in 1990.

[Figure 1 about here.]

[Figure 2 about here.]

2.2 Unconditional Convergence

Despite negative findings of unconditional convergence at the aggregate level, the recent literature

suggests that within the manufacturing sector countries (or industries) tend to achieve higher

productivity growth if the initial level of productivity is relatively low Rodrik (2013a). Figure

3 illustrates unconditional convergence from a slightly di↵erent view. I plot industry-level RCA

growth4 in the tradeable sector from 1990 to 2010 against the gap between a country’s RCA

and average RCA of its trade partners weighted by import shares in 1990. There is clearly a

positive relationship between the growth rate and the initial gap, meaning that a country tends

to experience faster export growth in industries where it falls far behind its trade partners. That

being said, a country’s export capability converges to not only the world technology frontier

that is documented in the literature but also its trade partners’ levels. International technology

di↵usion, or more specifically, learning from trade partners seems to be a plausible explanation

of this convergence e↵ect. In the next section, I build up a model of technology di↵usion to

quantitatively assess how various channels of technology di↵usion could give rise to unconditional

convergence.

[Figure 3 about here.]

3 Model

My model has two main components. The cross-sectional setting is a multi-industry multi-

country Hechscher-Ohlin-Ricardian framework with industrial linkages, which closely follows

Caliendo and Parro (2014) and Levchenko and Zhang (2016). Dynamics of industry-level pro-

ductivity is modeled in line with Buera and Oberfield (2016). Di↵usion of ideas is the engine of

productivity growth. Two-way relationship between international trade and productivity growth

is separated into two dimensions: at each moment of time, the trade pattern is determined by

cross-country industrial productivity; along the time dimension, productivity growth is shaped

by the pattern of international trade. By incorporating the industry dimension into Buera and

4As is made clear in the quantitative exercise, unconditional convergence is a salient feature in trade and
production data under a variety of measures.
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Oberfield (2016), I am able to investigate a rich set of knowledge di↵usion and derive the law of

motion for industry-level productivity that is amenable to empirical implementation.

In my model, the world consists of N countries indexed by n and n0. There are I+1 industries

indexed by i and i0 among which the first I industries produce tradeable goods and the (I+1)-th

industry produces non-tradeable goods. Time is continuous, infinite, and indexed by t.

3.1 Cross-sectional Setup

To simplify the notation, I suppress the time subscript “t” in presenting the cross-sectional setup.

3.1.1 Demand

Goods from I + 1 industries are combined into final goods which are used for investment and

final consumption. The combination is of the form

Yn(Y
1
n , Y

2
n , ..., Y

I+1
n ) =

"
IX

i=1

�
!i
n

�1� �
Y i
n

�
#�n/ �

Y I+1
n

�1��n
,

where Yn is the output of final goods in country n and Y i
n is the goods from industry i, !i

n is the

share parameter of tradeable goods and
PI

i=1 !
i
n = 1 for any country n; �n is country-specific

Cobb-Douglas share of tradeable goods; the elasticity of substitution across tradeable goods is

given by 1/(1�). Therefore, a representative consumer in country n is faced with the following

per-period decision problem

max
Y 1
n ,Y 2

n ,...,Y I+1
n

Yn(Y
1
n , Y

2
n , ..., Y

I+1
n ) subject to

I+1X

i=1

P i
nY

i
n  En,

where P i
n is the industry-level price index and En is per-period total expenditure. Therefore,

consumers have two-tier preferences: the first tier is Cobb-Douglas between tradeable and non-

tradeable sectors and the second tier exhibits constant elasticity of substitution (CES henceforth)

across I tradeable industries. Standard derivation yields

Y i
n =

!i
nP

i
n


�1

PI
i0=1 !

i0
nP

i0
n


�1

· �nEn

P i
n

, i = 1, 2, ..., I, (1)

Y I+1
n =

(1� �n)En

P I+1
n

. (2)

3.1.2 Production

In each industry i, there is a unit mass of intermediate goods indexed by ⌫i 2 [0, 1]. Each variety

of intermediate good ⌫i is produced by using labor, capital, and composite intermediate goods.
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Production technology is of Cobb-Douglas form

qin(⌫
i) = zin(⌫

i)[`in(⌫
i)]�

iL
[ki

n(⌫
i)]�

iK
I+1Y

i0=1

[mii0

n (⌫i)]�
ii0
n ,

where qin(⌫
i) is the output of variety ⌫i; zin(⌫

i) is the productivity level; `in(⌫
i) and ki

n(⌫
i) are labor

and capital; mii0
n is composite intermediate goods from industry i0; Cobb-Douglas coe�cients �iL

and �iK are the labor and capital shares; �ii0
n is the share of intermediate goods from industry i0,

capturing the important input-output (I-O henceforth) linkage that is emphasized by the recent

macroeconomics literature (Carvalho, 2014). Production technology follows constant returns to

scale (CRS henceforth), which requires �iL + �iK +
PI+1

i0=1 �
ii0
n = 1 for any country n. According

to the production function, the unit cost of an input bundle cin can be defined as

cin =

✓
wn

�iL

◆�iL ✓
rn
�iK

◆�iK I+1Y

i0=1

✓
P i0
n

�ii0
n

◆�ii0
n

, (3)

where wn is the wage rate and rn is the rental rate.

Composite goods in each industry are produced by combining a continuum of varieties within

the same industry. Production technology is of CES form

Qi
n =

Z 1

0

qin(⌫
i)(�

i�1)/�i
d⌫i

��i/(�i�1)

,

where �i is the elasticity of substitution. Standard derivation yields

qin(⌫
i) =

✓
pin(⌫

i)

P i
n

◆��i

Qi
n,

with

P i
n =

Z 1

0

pin(⌫
i)1��i

d⌫i

�1/(1��i)

,

where pin(⌫
i) is the price of variety ⌫i in country n.

Composite goods in each industry can be used as either intermediate goods for domestic

production or production of final consumption goods. Production technology of composite and

final goods is identical across countries. It implies that international trade only occurs at the

variety level, which will be specified in the next section.

3.1.3 International Trade

Trade cost is of the iceberg form (Samuelson, 1954). It requires shipping dinn0 units of goods from

country n0 to deliver one unit of good to country n. The triangle inequality is assumed to always

hold: dinn00din00n0 � dinn0 for any country n, n0, n00 and industry i. It implies re-export is always

more costly than direct export in the model, and consequently trade hubs like Singapore and
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Hong Kong are excluded in the empirical implementation of the model. For the non-tradeable

sector, dI+1
nn0 = 1 for any n, n0 such that n 6= n0. Domestic trade is assumed to be frictionless5,

so dinn = 1 for any n and i.

The product market is assumed to be perfectly competitive. Each variety of intermediate

inputs is purchased from the supplier with the lowest unit cost adjusted by trade cost. Recall

that cin is the unit cost of an input bundle of industry i in country n. Therefore, price of the

intermediate good ⌫i in country n is given by

pin(⌫
i) = min

⇢
ci1d

i
n1

zi1(⌫
i)
,
ci2d

i
n2

zi2(⌫
i)
, ...,

ciNd
i
nN

ziN(⌫
i)

�
.

Following Eaton and Kortum (2002), variety-level productivity zin is a random draw from a

Fréchet distribution given by

F i
n(z) = exp(��i

nz
�✓i).

where F i
n is country n’s productivity distribution in industry i; the location parameter �i

n governs

the mean of distribution; ✓i measures the dispersion of the distribution. Denote by ⇡i
nn0 the share

of expenditure that country n spends on the imports from country n0 in industry i. Utilizing the

probabilistic structure, standard derivation yields

⇡i
nn0 =

�i
n0(cin0dinn0)�✓i

PN
n00=1 �

i
n00(cin00dinn00)�✓i

, (4)

where the denominator captures “multilateral resistance” coined by Anderson and van Wincoop

(2003), that is, the fact that bilateral trade flows are shaped by economic variables beyond those

of the bilateral trading partners in a multilateral world. The industry-level price index is also

determined by the multilateral resistance terms

P i
n =


�

✓
1 +

1� �i

✓i

◆�1/(1��i)
 

NX

n0=1

�i
n0(cin0dinn0)�✓i

!�1/✓i

, (5)

where �(·) is the Gamma function. The usual regularity condition ✓i +1 > �i is imposed, so the

price index is well defined.

Note that the location parameter �i
n varies across time t. When turning to the time dimension

of the setup, I will use the learning process introduced by Buera and Oberfield (2016) to further

endogenize and dynamize the industry-level productivity distribution.

3.1.4 Market Clearing and Instantaneous Equilibrium

Denote country n’s total trade deficit by Dn. Like Caliendo and Parro (2014), I allow interna-

tional lending and borrowing, and trade deficits are exogenously given. The world-total trade

5The recent work by Ramondo et al. (n.d.) suggests that assuming each country being fully integrated may
not be innocuous.
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deficit has to be balanced out, so
PN

n=1 Dn = 0. Country n’s expenditure is therefore given by

En = wnLn + rnKn +Dn, (6)

where Ln and Kn is labor and capital endowment.

By definition, the trade deficit is the di↵erence between total imports and exports

Dn =
I+1X

i=1

 
P i
nQ

i
n �

NX

n0=1

P i
n0Qi

n0⇡i
n0n

!
(7)

Recall that the industrial composite goods can be used for either intermediate goods or final

consumption goods, so the product market clearing condition in each industry is given by

P i
nQ

i
n =

I+1X

i0=1

�i0i
n

NX

n0=1

P i0

n0Qi0

n0⇡i0

n0n + P i
nY

i
n (8)

Given the Cobb-Douglas production function, the share of labor and capita income within

each industry is given by �iL and �iK , respectively. Therefore, I have

wnL
i
n = �iL

NX

n0=1

P i
n0Qi

n0⇡i
n0n (9)

rnK
i
n = �iK

NX

n0=1

P i
n0Qi

n0⇡i
n0n, (10)

where Li
n and Ki

n are industry-level labor and capital.

Market clearing conditions for labor and capital markets further require

I+1X

i=1

Li
n = Ln (11)

I+1X

i=1

Ki
n = Kn. (12)

At each moment of time t, given labor and capital endowment {Ln}Nn=1 and {Kn}Nn=1, trade

deficits {Dn}Nn=1, bilateral industry-level trade costs {dinn0}N,N,I+1
n=1,n0=1,i=1, and industrial productiv-

ity measures {�i
n}

N,I+1
n=1,i=1, an instantaneous equilibrium is characterized by {rn}Nn=1, {wn}Nn=1, and

{P i
n}

N,I+1
n=1,i=1 such that consumers maximize utility (Equation 1, 2), firms maximize profit (Equa-

tion 3), decision on international trade is made optimally (Equation 4, 5), product markets clear

(Equation 6 - 8), and factor markets clear (Equation 9 - 12), or in short, Equation 1 - 12 hold6

for any country n and industry i.

6Among these equations, N equations are redundant due to the income-expenditure identity for each country.
Proof can be found in Appendix B.1.

10



3.2 Dynamic Setup

3.2.1 A General Learning Process

I start with a brief description of a general learning process originally formulated by Buera and

Oberfield (2016). Technology advances through adopting new ideas. Arrival of new ideas is

modeled as a Poisson process with rate ⌘̃. Upon arrival of a new idea, the producer compares

the productivity level of her technology with the realized productivity of the new idea. Pro-

ductivity level associated with each new idea, zG, is drawn from a source distribution Gi
n,t(·).

The source distribution evolves over time and potentially varies across countries and industries.

I will explicitly specify the source distribution when turning to explain di↵erent channels of

knowledge di↵usion. Producers are faced with uncertainty when adopting new ideas. Ran-

domness of adoption e�ciency is captured by another random draw, zH , from an exogenous,

time-invariant distribution H i(·). In particular, the actual productivity of a new idea is given

by a Cobb-Douglas combination of these two draws, z�
i

G z1��i

H . The new idea is adopted if and

only if z�
i

G z1��i

H is greater than the productivity level of the existing technology z. This process

of adopting new ideas yields the following law of motion of industrial productivity distribution

F i
n,t

d

dt
lnF i

n,t(z) = �⌘̃

Z 1

0

"
1�Gi

n,t

 
z1/�

i

x(1��i)/�i

!#
dH i(x).

Following Buera and Oberfield (2016), I assume that H i(·) follows a Pareto distribution,

H i(z) = 1� (z/z0)�✓̃i , for z > z0. Let ✓i ⌘ ✓̃i/(1� �i) and normalize ⌘ ⌘ ⌘̃z✓̃0 to be a constant.

It can be further shown that

lim
z0!0

d

dt
lnF i

n,t(z) = �⌘z�✓i
Z 1

0

x�i✓idGi
n,t(x),

provided that limx!1[1�Gi
n,t(x)]x

�i✓i = 0.

Therefore, I obtain the following industrial productivity distribution

F i
n,t(z) = exp(��i

n,tz
�✓i),

with the law of motion of the key productivity parameter �i
n,t

d�i
n,t

dt
= ⌘

Z 1

0

x�i✓idGi
n,t(x).

Notice that the industrial productivity distribution above coincides with the Fréchet distribution

that I assume in the cross-section setting. In this sense, the general learning process endogenizes

the industrial productivity distribution.

Now consider firms can learn from multiple sources. Suppose producers draw new ideas from

source s with distribution Gi,s
n,t at a normalized rate ⌘s. Arrival of new ideas from di↵erent sources

is independent from each other. Adoption e�ciency is assumed to be industry-specific but source-
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invariant. Therefore, I can write the general law of motion of industry-level productivity under

multiple sources as follows
d�i

n,t

dt
=
X

s

⌘s
Z 1

0

x�i✓idGi,s
n,t(x). (13)

3.2.2 Channels of Idea Flows

I consider four channels of idea flows: learning from foreign exporters and domestic producers

within the same industry as well as across industries. As a benchmark, I start with the assumption

that productivity dispersion does not vary across industries: ✓i = ✓.

1. Intra-industry learning from domestic producers and foreign sellers

Producers within the same industry can learn from each other. Social learning has long

been argued crucial to understanding of productivity growth (Acemoglu, 2008). A growing

body of recent work also empirically confirms learning from information neighbors as an

important factor of technology adoption (Bandiera and Rasul, 2006; Conley and Udry,

2010). Case studies of Argentinian industries by Artopoulos et al. (2013) suggest domestic

knowledge di↵usion could significantly impact a country’s comparative advantage through

learning from export pioneers. Moreover, a large literature studies international technology

di↵usion through imports at the industry level. This channel is found important for both

high-tech industries like capital equipments (Eaton and Kortum, 2001) and more traditional

industries like agriculture (Gisselquist and Jean-Marie, 2000). In a more recent study,

Acharya and Keller (2009) points out that the import channel operates asymmetrically

across advanced economies and plays a predominant role in technology transfers from major

European countries.

In the model, a producer randomly meets another seller in the same industry with the

Poisson intensity ⌘̃in,t. Assuming that each active seller in the domestic market is drawn

with equal probability, I obtain the source distribution of this channel Gi
n,t as

Gi
n,t(z) =

Z z

0

NX

n0=1

Y

n00 6=n0

F i
n00,t

 
cin00,td

i
nn00

cin0,td
i
nn0

x

!
dF i

n0,t(x),

where
Q

n00 6=n0 F i
n00,t

✓
ci
n00,td

i
nn00

ci
n0,td

i
nn0

x

◆
dF i

n0,t(x) can be interpreted as the (infinitesimal) proba-

bility that a firm with productivity x from country n0 is the cheapest seller in country

n.

2. Inter-industry learning from domestic producers and foreign sellers

By incorporating industry dimension to Buera and Oberfield (2016), I am able to investigate

a much richer set of di↵usion channels beyond intra-industry interactions. Cai and Li (2014)

presents a closed-economy innovation-based growth model with a technology space and

their simulation results match well with the key firm-level facts. On the other hand, since
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the earlier contribution by Young (1991), there are a series of theoretical and empirical

papers that investigates the impact of technology space on industry-level and aggregate

growth in the open-economy context (the companion paper by Cai and Li (2016) is a

state-of-the-art example).

Analogously, I allow firms in industry i to learn from active sellers in another industry i0

of the domestic market. New ideas arrive with rate ⌘̃ii
0

n,t. The source distribution is then

given by

Gii0

n,t =

Z z

0

NX

n0=1

Y

n00 6=n0

F i0

n00,t

 
ci

0
n00,td

i0
nn00

ci
0
n0,td

i0
nn0

x

!
dF i0

n0,t(x).

Collecting these channels together and using Equation 13, I obtain the law of motion of

industry-level productivity as follows7

d�i
n,t

dt
=

Intra-industry spillover, domesticz }| {
⌘in,t⇡

i
nn,t

1��i

�i
n,t

�i

+

Intra-industry spillover, internationalz }| {
⌘in,t

X

n0 6=n

⇡i
nn0,t

1��i

�i
n0,t

�i

+

Inter-industry spillover, domesticz }| {X

i0 6=i

⌘ii
0

n,t⇡
i0

nn,t

1��i

�i0

n,t

�i

+

Inter-industry spillover, internationalz }| {X

i0 6=i

⌘ii
0

n,t

X

n0 6=n

⇡i0

nn0,t

1��i

�i0

n0,t

�i

, (14)

where⌘in,t ⌘ �(1 � �i)⌘̃in,t, and ⌘ii
0

n,t ⌘ �(1 � �i)⌘̃ii
0

n,t. In the Equation above, ⇡nn0,t is directly

observed in trade data and �i
n,t can be estimated by using production and trade data. The main

objective of my empirical exercise is to obtain di↵usion parameters, ⌘in,t and ⌘ii
0

n,t. In the most

general setting, there are too many di↵usion parameters, so I will impose further assumptions

on those parameters when turning to the empirical specification.

It might already be noticed that intra-industry domestic technology di↵usion is isomorphic

to an alternative formulation through the standard narrative of learning-by-doing. Therefore,

unlike the development economics literature using micro-data (Foster and Rosenzweig, 1995), I

will not distinguish learning-by-doing from learning spillover, so the empirical interpretation of

this channel should encompass both mechanisms. Moreover, unlike Buera and Oberfield (2016),

I only consider the channel that is called “learning from sellers” in their original paper. Since

exporters must also sell in their own domestic market due to the triangle inequality of trade

cost, by taking into account learning from domestic sellers, the industry-level di↵usion process

already captures the idea that domestic producers could learn from each other. Having additional

learning channels may potentially improve the prediction of the model, but as suggested by my

empirical results, this learning process already captures the salient features in trade data.

I close this part by discussing the simplifying assumption made earlier: ✓i = ✓ for any i.

According to Caliendo and Parro (2014), there is substantial variation of industrial productivity

dispersion across industries. In the presence of heterogeneous ✓i, when producers in industry i

with little productivity dispersion (high ✓i) learn from producers in industry i0 with substantial

7Detailed derivation can be found in Appendix B.2.
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productivity dispersion (low ✓i
0
), the recipient industry’s productivity distribution tends to be

largely shaped by the extreme values drawn from the source distribution. It can be formally

shown that the learning process becomes degenerate if and only if ✓i
0  �i✓i. Therefore, to relax

the assumption on homogeneous ✓i, I have to assume that the learning process is adjusted for

industrial dispersion so as to maintain the analytical tractability of the model. In particular, an

adjustment parameter ⌧ii0 is introduced into inter-industry spillover. When producers in industry

i draws a new insight zG from productivity distribution G of industry i0 as well as a random draw

of adoption e�ciency zH from the exogenous distribution H, the actual productivity of this new

insight is given by z⌧
ii0�i

G z1��i

H with ⌧ ii
0
= ✓i

0
/✓i. Under this assumption of dispersion adjustment,

the law of motion of industrial productivity (Equation 14) will be unchanged without assuming

a uniform industrial productivity dispersion ✓8.

3.2.3 Evolution of Endowment

To complete the dynamic setting of the model, I specify the law of motion of labor and capital.

Population growth rate �n,t is country-specific and time varying. It is defined as

dLn,t

dt
= �n,tLn,t.

The equation of capital accumulation is given by

dKn,t

dt
= In,t � �n,tKn,t,

where In,t is investment and �n,t is depreciation rate. Since international borrowing and lending

is allowed in this model, the domestic saving is not necessarily equal to domestic investment.

The following accounting identity always holds

Dn,t = Pn,t(In,t � Sn,t)

where Sn,t is the domestic saving, and Pn,t is the price index of final goods given by

Pn,t =

 
NX

i=1

!i
n

✓
P i
n,t

�n

◆ 
�1

!�1
 �n  

P I+1
n,t

1� �n

!1��n

.

The model features both Ricardian and Heckscher-Ohlin motive of international trade. How-

ever, since the main theme of the paper is on productivity dynamics, the evolution of endowment

structure is treated exogenous. At each moment of time, consumers treat saving rates and trade

deficit (and thereby investment rates) as given. By abstracting away from the complex intertem-

poral consumption-saving decision, a country’s investment level goes hand in hand with its total

output. This simplifying assumption makes it possible to conduct a battery of counterfactual

analysis on the Ricardian side on the model.

8Proof can be found in Appendix B.3.
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4 Empirical Specification and Data

4.1 Sample Construction

My sample construction mainly follows Levchenko and Zhang (2016). The baseline sample

consists of 72 countries and regions among which 42 are non-OECD economies. Data from

OECD economies typically have longer time span. Since my second-stage estimation requires

a balanced panel, I use data from 1990 to 2010 to maximize the number of countries. As a

robustness check, similar analysis will also be performed in a longer time span from 1970 to 2010,

but most countries in the former Soviet Union will no longer be included. Although the trade

and production data is of annual frequency, I choose the length of each period to be five years to

ensure that productivity estimates and calibration of di↵usion parameters are not contaminated

by short-run business fluctuations. Therefore, the baseline sample is a four-period balanced panel.

All the variables are averaged within each period. The sample contains 17 tradeable industries.

They are slightly aggregated up from 2-digit ISIC (revision 3) manufacturing industries9.

My sample is constructed from two main data sources10. Bilateral trade variables are obtained

from UN Comtrade database and further aggregated up from 4-digit SITC level into 2-digit ISIC

level. Production variables including industry-level output, value added, and wage bills come

from UNIDO INDSTAT2 (2015 edition) database. Country-specific variables like wage and rental

rates, labor supply, and capital stock are taken from Penn World Table (version 8.1). .

4.2 Empirical Specification

My empirical specification consists of two stages. The first stage utilizes the gravity structure

in each instantaneous equilibrium repeatedly to estimate trade costs dinn0,t at the industry level,

industry-level productivity parameters �i
n,t and other cross-sectional structural variables. Esti-

mation of industry-level productivity parameters �i
n,t further consists of two steps. The first step

is to estimate productivity parameters relative to a benchmark country, in my setting, United

States, following the procedure originally proposed by Shikher (2012). The second step is to

estimate US industry-level productivity parameters (�i
US) taking into account the mechanism of

Ricardian selection coined by Finicelli et al. (2013). The second stage calibrates the di↵usion

parameters ⌘in,t, and ⌘ii
0

n,t. This stage requires solving the instantaneous equilibrium every period

and applying model-implied trade and production variables to the law of motion of industry-level

productivity.

4.2.1 First Stage: Trade and Production Variables

The first-stage estimation only needs the production and trade side of the cross-sectional equi-

librium structure, so the subscript t is omitted if not needed. I first derive the empirical version

9In the appendix, Table A1 reports the coverage of countries and availability of trade and production data for
each country, and Table A2 lists industry descriptions.

10The details of sample construction are delegated to Appendix C. Table A3 gives an overview of construction
of key variables and data sources.
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of the gravity equation from the model. Using Equation 4, I have

ln

✓
⇡i
nn0

⇡i
nn

◆
= ln

⇣
�i
n0cin0

�✓i
⌘
� ln

⇣
�i
nc

i
n

�✓i
⌘
� ✓i ln(dinn0), (15)

where �i
nc

i
n
�✓i

measures the competitiveness of country n in industry i. Like Eaton and Kortum

(2002), define the competitiveness measure as the industry-level productivity parameter adjusted

by the unit cost of an input bundle, Si
n ⌘ �i

nc
i
n
�✓i

. Assuming the bilateral trade cost is of the

form

ln(dinn0) = Distnn0 +BilateralV arnn0 + Expin0 + "inn0 (16)

where Distnn0 captures the impact of bilateral distance on trade cost and the impact is dis-

cretized by categorizing distance in miles into six intervals, [0, 375), [375, 750), [750, 1500), [1500,

3000), [3000, 6000), [6000, maximum). BilateralV arnn0 includes a set of variables capturing the

e↵ects on trade cost if two trading partners have common border, share the same language,

belong to a common currency union or free trade area. I also include the industry-level exporter

fixed e↵ect Expin0 that is forcefully argued by Waugh (2010) to generate implications more con-

sistent with empirical evidence than the approach using importer fixed e↵ects. The last term is

an error term orthogonal to all the importer and exporter fixed e↵ects and bilateral observables

mentioned above.

Combining Equation 15 and 16, I obtain

ln

✓
⇡i
nn0

⇡i
nn

◆
= lnSi

n0 � ✓iExpin0 � lnSi
n � ✓iBilateralV arnn0 � ✓i"inn0 , (17)

where (lnSi
n0 � ✓iExpin0) and (� lnSi

n) can be captured by two fixed e↵ects. Since we take US

as the benchmark country, the competitiveness measure relative to US can be obtained from the

importer fixed e↵ects,

Si
n

Si
US

=
�i
n

�i
US

✓
cin
ciUS

◆�✓i

, (18)

In the benchmark estimation, I pick ✓i to be 4, the same value across industries (✓i ⌘ ✓). In

the section of robustness check, I will report results using other values of ✓i, including industry-

specific estimates from Caliendo and Parro (2014). According to the expression above, to obtain

the estimates of relative productivity parameters, �i
n/�

i
US, what remains are estimates of relative

unit costs cin/c
i
US. As a benchmark, I assume I-O shares are country-invariant. Using Equation

3, I have

cin
ciUS

=

✓
wn

wUS

◆�iL ✓
rn
rUS

◆�iK IY

i0=1

✓
P i0
n

P i0
US

◆�ii0 ✓
P I+1
n

P I+1
US

◆�i(I+1)

, (19)

where all the Cobb-Douglas coe�cients can be calculated using production data and I-O tables.

The I-O shares are calibrated to US in the benchmark exercise, while country-specific I-O tables

will be used as a robustness check. Relative wage rates and relative rental rates are obtained from

the Penn World Table. The relative price indices in the nontradeable sector are obtained from
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the International Comparison Program. To obtain relative price indices in tradeable industries,

I follow Shikher (2012). Using Equation 4 and 5, I can show

⇡i
nn

⇡i
US US

=
Si
n

Si
US

✓
P i
n

P i
US

◆✓

. (20)

Collecting Equation 18 - 20, I finally have

�i
n

�i
US

=
Si
n

Si
US

✓
wn

wUS

◆✓�iL ✓
rn
rUS

◆✓�iK ✓
P I+1
n

P I+1
US

◆✓�i(I+1) IY

i0=1

✓
⇡i0
nn

⇡i0
US US

Si0
US

Si0
n

◆�ii0

, (21)

where all the relative terms on the right hand side are either estimated or directly measurable11.

For the nontradeable sector, estimation of relative productivity parameters is even simpler. Equa-

tion 5 implies

�I+1
n

�I+1
US

=

✓
cI+1
n

cI+1
US

P I+1
US

P I+1
n

◆✓

,

where cI+1
n /cI+1

US is obtained from Equation 19 and 20, and P I+1
n /P I+1

US can be directly obtained

from data.

Estimation of Equation 17 also yields the relative competitiveness measure Si
n0/Si

n for every

country pair. Plugging this back into Equation 15, I can also obtain a panel of trade costs dinn0 .

Trade cost estimates will be used as exogenous parameters in the second-stage calibration. Based

on estimation of the gravity equation at the annual frequency, Figure 4 shows how average trade

costs decline during the post-war era and the trend is generally downward across most industries.

The decline of median trade cost is much sharper under a balanced panel. The slight increase of

trade cost of the pooled sample from 1960s to 1980s is entirely due to compositional change, as

countries with longer distance started international trade. The only anomaly under the balanced

panel is that the trade cost of the petroleum/fuel industry picked up early 2000s, which is mostly

likely to be driven by 2000s energy crisis.

[Figure 4 about here.]

The second step of the first-stage estimation is to estimate US industry-level productivity pa-

rameters �i
US. By aggregating up output, capital, production and non-production worker hours,

and materials from 4-digit SIC level to 2-digit ISIC level, I first estimate 4-factor productiv-

ity, TFP i
US, of tradeable industries Bartlesman and Gray (1996). US TFP in the nontradeable

sector is obtained by combining information from NBER-CES database and Penn World Table.

However, the observed TFP may overestimate a country’s underlying productivity level because

trade openness forces many unproductive domestic producers to exit the market. According to

11As a cross validation, I compare the first-stage TFP estimates with those reported in Fadinger and Fleiss
(2011). Under similar Ricardo-Heckscher-Ohlin context but with monopolistic competition, they also obtain
industry-level TFP estimates relative to US. The cross-sectional comparison is based on 1996 data and it is found
that correlation is above 0.5 for a vast majority of industries.
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Finicelli et al. (2013), the true productivity level needs to be adjusted by the share of domestic

absorption12

�i
US = (TFP i

US)
✓⇡i

US US. (22)

Combining Equation 21 and 21, I obtain the estimates of productivity parameters across all

countries and industries.

4.2.2 Second Stage: Di↵usion and Learning Parameters

The second stage calibrates the di↵usion parameters. To simplify my analysis, I first impose

the assumption that each di↵usion parameter can be written as a country-specific term and a

industry-specific term, that is, ⌘in,t = ⌘n,t⌘
i, ⌘ii

0
n,t = ⌘n,t⌘

ii0
t . The country-specific term is calibrated

to match the country-level TFP growth rates. In the benchmark exercise, I further impose

three assumptions: the di↵usion parameter �i is industry-invariant, ⌘n,t = ⌘t and inter-industry

knowledge linkages are proportional to production I-O linkages. Therefore, I end up with only

two parameters to calibrate in each period, a di↵usion intensity parameter ⌘t, and a learning

parameter � ⌘ �i. Later I will check robustness of the benchmark setting by relaxing each of

these assumptions.

Calibration of � and ⌘ works as follow. First take an initial guess of di↵usion and learn-

ing parameters. Given the first-period estimates of productivity parameters �i
n,t0

, I solve the

instantaneous equilibrium for bilateral trade shares13. Using the law of motion of productivity

parameters (Equation 14), I obtain �i
n,t for the next period. Then given the predicted productiv-

ity parameters, I solve the next-period instantaneous equilibrium. Iterating this process until the

last period of the sample, I obtain a full panel of bilateral trade shares and production variables.

Country-level TFP growth rate is chosen as the target of the calibration exercise and I will use

predicted industry-level TFP and trade patterns to test internal validity of the model.

Evolution of the endowment structure is treated exogenous. In each period, total labor supply

Ln,t is given. Capital series is simulated using exogenous investment rates from the Penn World

Table. Exogenous trade deficits Dn,t are introduced as a wedge between a country’s total income

and expenditure.

5 Empirical Results

5.1 Baseline Results

Panel I of Table 1 reports the goodness of fit under a full panel of estimated industry-level TFP.

The target variables for each cross-sectional equilibrium are country-level labor and capital. The

implied trade pattern matches actual trade pattern well. Correlation is consistently above 0.85

and median and mean trade shares are quite close. Panel II reports the goodness of fit under our

12Notice that TFP i
US needs to be exponentiated, because the mean of a productivity distribution with cdf

given by F (z) = exp(��z�✓ is proportional to �1/theta.
13Details of the solution algorithm can be found in Levchenko and Zhang (2016).
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baseline calibration. The first-period TFP is chosen as the estimated TFP from data, so goodness

of fit for 1990-1995 stays the same. It is expected that as the number of iterates increases, it

becomes di�cult for the model to match data. However, correlation between bilateral trade

share is still consistently above 0.75.

[Table 1 about here.]

I now turn to the key prediction of the model, convergence in comparative advantage. Figure

5 compares the pattern of unconditional convergence in RCA implied by the model with data. It

can be clearly seen that the simulated trade data also exhibits strong unconditional convergence.

Industries with little export volume in 1990 enjoy much higher growth in the next two decades.

To establish the pattern of unconditional convergence more formally, I regress the growth rate

of the variable of interest on the initial value of that variable and a set of fixed e↵ects,

(lnXt1 � lnXt0) = ↵ lnXt0 + FixedE↵ects + ". (23)

There are a variety of measures of comparative advantage. I consider three alternatives for

X: RCA index14 because it is directly observable; Industry level TFP, the central variable of

interest; export capability15 proposed by Hanson et al. (2016). I also include bilateral trade

shares (not taking the logarithm) to check if unconditional convergence occurs on a bilateral

base. Table 2 presents regression results over cross-sectional observations of 20-year window

(t1� t0 = 20). The first row reports convergence coe�cients of the actual trade and productivity

data. They are all estimated negative and statistically significant, which echoes earlier findings

in the literature. The second row reports the convergence coe�cients of our baseline calibration.

The learning e�ciency parameter � is calibrated to be 0.301. Given parsimony of the parameters

in our calibration exercise, it is surprising to see that the model-implied convergence coe�cients

are remarkably close to the actual data. OECD countries tend to have lower convergence rate

than Non-OECD countries in the data. It is also well captured by the model. In the sample

of Non-OECD countries, the convergence rate matches perfectly with data, while in the sample

of OECD countries, the model slightly under-predicts the convergence rate. It should also be

noticed that this convergence pattern is not the artifact of my calibration exercise, because in

the baseline calibration, no country-specific or industry-specific trend is fed into the model.

To check the robustness of the baseline calibration, I consider three alternative calibration

strategies. Method II allows � to be di↵erent across sample periods (� = 0.169, 0.119, 0.500).

Method III applies actual trade data rather than simulated trade data to the law of motion of

industrial TFP (� = 0.240). Method IV allows � to be time-variant and uses actual trade data

in TFP updating (� = 0.158, 0.009, 0.484). The results are very close to the benchmark case.

However, Method IV raises the concern that the value of � seems to be sensitive to calibration

strategy. Therefore, I redo the benchmark exercise by fixing � to 0.5 or 0.7 and report the results

14The results are robust if symmetric or weighted RCA indices are used (Yu et al., 2009).
15Formally, it is obtained as the exporter fixed e↵ect by running the standard gravity model by industry and

time.
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in the last two rows. They further confirm the finding that the convergence pattern delivered by

the model is quite robust.

[Figure 5 about here.]

[Table 2 about here.]

The second test of internal validity concerns the turnover of export industries. Following

Proudman and Redding (2000), I construct a transition matrix in terms of industry-level TFP.

To account for industrial variation, I divide the TFP estimates by the 90-percentile TFP for

each industry. Then for each country, I rank 17 industries by its adjusted TFP measure. In each

sub-table of Table 3, the ij-element in a transition matrix represents the conditional probability

that a group-i industry in 1990 moves to the jth group in 2010. More concretely, according

to the first sub-table in Table 3, if an industry is among the top 4 industries in 1990, this

industry is expected to remain top 4 after 20 years with probability 51%. Diagonal terms in a

transition matrix indicate persistence in specialization, while o↵-diagonal terms capture mobility

in specialization. Comparing the two transition matrices in each panel, I find the model tends to

under-predict mobility of comparative advantage than data. However, if we restrict our attention

to the sample of non-OECD countries, the model delivers much closer prediction to the data.

It once again suggests that this model of technology di↵usion is more applicable to developing

countries which are precisely the group of countries that receive not enough attention from

innovation-based growth models.

[Table 3 about here.]

As a last test of internal validity, Figure 6 reports the distribution of share of top 1 and

3 export industry (industries) in a country’s total export. This is meant to capture hyper-

specialization pointed out by Hanson et al. (2016). Consistent with actual data, the model

implies that top 1 industry should account for 37% of a country’s total export volume and top

3 industries should account for almost 2/3 of the total export volume. This suggests that strong

mean reversion and skewness of export share could well co-exist, so our empirical exercise o↵ers

a potential mechanism that solves the puzzle raised by Hanson et al. (2016).

[Figure 6 about here.]

Given the assumptions on di↵usion and learning parameters, the baseline law of motion of

industry-level productivity parameters can be written as

d�i
n,t

dt
= ⌘t
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This equation can be used to decompose productivity growth into four di↵erent channels: inter-

and intra- industry idea flows within and across borders. Although learning and di↵usion param-

eters are not country-specific, decomposition of productivity growth still varies across countries

because each country has di↵erent trade partners, thereby di↵erent learning opportunities. Fig-

ure 7 illustrates the decomposition of productivity growth. The domestic technology di↵usion

on average accounts for about 36% of the overall industry-level productivity growth, while the

rest 64% of the productivity growth can be attributed to international technology di↵usion. In

other words, producers tend to learn more from foreign sellers in the domestic markets than from

their fellows. Under the assumption that inter-industry di↵usion intensity is proportional to I-O

coe�cients, I find that inter-industry knowledge di↵usion can explain about 58% of the over

productivity growth. It suggests that ignoring inter-industry knowledge linkages may substan-

tially bias the prediction of productivity dynamics across industries as well as the contribution

of cross-border relative to within-border technology di↵usion because international technology

di↵usion mainly arises from inter-industry learning.

[Figure 7 about here.]

Figure 8 illustrates decomposition of productivity growth among OECD and non-OECD coun-

tries. The decomposition looks very similar across these two country groups in the benchmark

setting. At first glance, this may seem counter-intuitive, because rich countries tend to trade

more with rich countries, thus having better sources of learning. But rich countries also have

higher domestic productivity, so this balances out international technology di↵usion and makes

the contribution of each channel similar to developing countries. Figure 9 further plots decom-

position by industry. Traditional industries like food and cloth seem to have di↵erent pattern of

knowledge di↵usion than modern industries like machinery and electronics.

[Figure 8 about here.]

[Figure 9 about here.]

Although di↵erent values of � suggest similar convergence rate according to Table 2, this

does not mean � plays little role in understanding dynamics of comparative advantage. Figure

10 plots the contribution of each channel against �. Contribution of domestic knowledge dif-

fusion decreases with �. This is a direct consequence of the learning specification from Buera

and Oberfield (2016). As the learning e�ciency becomes smaller, high-quality ideas from for-

eign exporters get heavily discounted and sources with di↵erent quality of ideas become less

distinguishable from each other.

[Figure 10 about here.]
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5.2 Robustness Check

This section checks the robustness of our baseline results. Our first set of robustness check

concerns di↵erent methods of estimating the baseline industry-level TFP. Table A4 summarize

the convergence pattern of the variables of interest under five alternative estimates of industry-

level TFP. The first panel reports the convergence pattern of the alternative TFP estimates from

data. The second panel reports for comparison the convergence pattern of simulated TFP from

the model where the first-period TFP is obtained from corresponding alternative specifications.

The last panel reports convergence in trade patterns suggested by the model. In column (1), I

re-estimate the main gravity equation using Poisson pseudo-maximum likelihood method (PPML

henceforth) proposed by Silva and Tenreyro (2006) to address the issue of “zeros” in bilateral

trade flows. Accordingly, bilateral trade costs are also obtained from PPML regressions. The

model predicts stronger convergence than what data suggests, but if we break the sample into

OECD and non-OECD countries, the convergence rate in each subsample is reasonably close to

the data. Column (2) – (5) re-estimates the model using country-specific and time-variant I-O

tables16. In column (2) and (3), I maintain the baseline setting that trade elasticity is industry

invariant and simulate the model using both OLS and PPML TFP estimates. According to

Caliendo and Parro (2014), trade elasticity varies substantially across industries, so column

(4) and (5) are based on TFP estimates using their industry-specific ✓i. Overall the model

delivers similar degree of convergence of TFP as data in terms of both statistical and economic

significance. Notice that the simulated model in column (4) and (5) suggests much stronger

convergence in trade variables. This is due to the fact that some industries have very high trade

elasticity (for example ✓i = 50 for petroleum industry), which leads to more outliers of �i in

the first-stage estimation. The convergence rate largely agrees with data if these outliers are

dropped17.

The second set of robustness check concerns the choice of di↵usion matrices. In the first

panel of Table 4, I report the convergence pattern using country-specific I-O tables as di↵usion

matrices. Compared with the benchmark simulation, the results are highly robust. Moreover,

since the pattern of inter-industry knowledge di↵usion may be di↵erent from what is suggested

by production I-O tables, I also construct a matrix of inter-industry knowledge flow in light of

Cai and Li (2014). Each element in the di↵usion matrix is defined as the share of patent citation

from industry i to j. The simulated model slightly outperforms the one using I-O tables.

[Table 4 about here.]

The third robustness check concerns the sample choice. Table 5 reports the results of uncon-

ditional convergence from 1970 to 2010. The cost of using a longer sample period is that I have

only 55 countries among which 25 are OECD countries. The results are generally consistent with

16The country-specific I-O tables are constructed from WIOD database (Timmer et al., 2015). Details can be
found in the appendix.

17In light of Levchenko and Zhang (2016), I also reestimate the model using alternative interest rates (marginal
product of capital (Caselli and Feyrer, 2007); full financial integration; WDI lending rates). The baseline results
are essentially unchanged.
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those obtained from the benchmark sample. The model predicts lower rate of convergence in

TFP than data, mainly because some important sources of idea flows like Germany are no longer

in the sample and neither are many technology receives such as Eastern European countries18

Column (5) reports results of import share, an indirect reduced-form measure of a country’s

export capability. The convergence rate suggested by the model is remarkably similar to the

data. Table 6 compares convergence in TFP by industry19. For a majority of industries, the rate

of convergence is comparable. For industries that are heavily endowment-driven like Coke and

petroleum products, the model fails to capture lack of convergence in the data, which suggests

alternative mechanisms might be at work in these industries.

[Table 5 about here.]

[Table 6 about here.]

I also allow the di↵usion parameter to be industry-specific. The convergence results are

comparable to the benchmark simulation and reported in the online appendix. Table 7 reports

calibrated industry-specific �i under two methods. Interestingly, �i is very similar across indus-

tries, ranging from 0.280 to 0.455. This suggests that the baseline calibration which assumes

industry-invariant � is a good approximation.

[Table 7 about here.]

The implied decomposition of contribution to TFP growth is very robust across di↵erent

specifications and samples. The calibrated model consistently suggests that international tech-

nology di↵usion contributes about 60-70% to TFP growth while domestic knowledge exchange

contributes the rest 30-40%. The only exception is when I use the patent citation matrix as

the di↵usion matrix. According to Figure 11, international technology di↵usion explains almost

80% of productivity growth, because the di↵usion parameter � is calibrated highest under this

specification20. Moreover, inter-industry di↵usion also plays a larger role because o↵-diagonal

terms are much larger in the patent citation matrix than production I-O tables.

Various specifications also yield comparable transition matrices. The model tends to under-

predict transition probability in TFP, but for non-OECD countries, the model produces closer

predictions to the data. Table 8 compares transition matrices over the longer sample period

from 1970 to 2010 and suggests a similar finding. Given how well the convergence pattern has

been reproduced in the model, it calls for additional channels to explain dynamism in industrial

productivity beyond unconditional convergence.

[Figure 11 about here.]

[Table 8 about here.]

18Due to similar reason, the bilateral trade share tends to be over-estimated. The issue becomes increasingly
severe over time because those emerging market economies that are excluded from the sample play a more and
more important role in global trade.

19I also report convergence in RCA by industry in Table A5 in the appendix.
20The data is obtained from Method III (� = 0.397) using patent citation matrix.
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6 Implications

6.1 “Key Players” in Technology Di↵usion

The calibrated model of technology di↵usion gives rise to a complex network of industry-level

technology di↵usion. By putting industries into play, complexity arises from both international

and inter-industry technology di↵usion. For example, the textile industry in Pakistan may be

a↵ected by the electronics industry in Germany through imports. Therefore, each country-

industry pair potentially learns from N ⇥ I sources (N countries, I industries). Denote the

direct knowledge contribution from industry i0 in country n0 to industry i in country n by ↵ii0
nn0 . I

obtain ↵ii0
nn0 using Equation 24 and by construction

P
n0,i0 ↵

ii0
nn0 = 1. If each country-industry pair

is treated as a node, then the matrix ↵ ⌘ {↵ii0
nn0}NI⇥NI is the adjacency matrix of a weighted

directed network.

To find “key players”, those countries (or country-industry pairs) that contribute most to the

global productivity growth through technology di↵usion, I need to define centrality measures21

in the global di↵usion network. The first centrality measure is defined as a country’s average

direct contribution to world productivity growth

CDirect
n =

P
n0,i,i0 ↵

i0i
n0nP

n,n0,i,i0 ↵
i0i
n0n

; CDirect
n,i =

P
n0,i0 ↵

i0i
n0nP

n,n0,i,i0 ↵
i0i
n0n

.

Table A7 reports each of top 5 OECD country’s contribution to global technology di↵usion

from 1990 to 2010. I also report the weighted-average contribution of which weights are given

by industry-level output share. It can be seen from the table that simple average yields similar

rankings as weighted average, but the share of contribution varies substantially. The weighted-

average centrality measure suggests that USA and Germany contribute to almost 40% of global

knowledge spillover. As a comparison, I also include five major emerging market economies

(“BRICS”) in the table, among which China’s contribution is very close to those leading OECD

countries. Table A7 also reports rankings under two alternatives of the di↵usion matrix: country-

specific production I-O tables and the patent citation matrix. The results are qualitatively

unchanged. In the appendix, Table A6 reports contribution to TFP growth by period. It can

be clearly seen from the table that China plays an increasingly important in global technology

di↵usion. By the end of the sample, China’s contribution to global TFP growth has surpassed

major industrialized economies like UK, Italy and France, being very close to Japan, the third

main contributor to idea flows for last two decades.

[Table 9 about here.]

Table 10 reports each of top 10 country-industry pair’s contribution to global technology

di↵usion. Across di↵erent measures, the ranking largely agrees with each other. The top-10

21A variety of centrality measures have been proposed by earlier work such as Duernecker et al. (2014) and Kali
and Reyes (2007) and studied in relation to economic growth. In contrast, my centrality measures are closely tied
to the model, thereby having more structural interpretations.
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list is almost exclusively comprised of four high-tech industries, vehicles, machinery, electronics,

and measurement, from USA, Japan, and Germany. This table also suggests that distribution

of contribution to technology di↵usion is extremely skewed. According to the weighted-average

centrality, among 1224 (72 countries multiplied by 17 industries), the top 10 country-industry

pairs contribute more than one-quarter to global TFP growth.

[Table 10 about here.]

Our second centrality measure concerns the extensive margin of global knowledge flows. De-

fine the degree centrality of a country or a country-industry pair as follows

CDegree
n =

X

n0,i,i0

1↵i0i
n0n�⇣ ; CDegree

n,i =
X

n0,i0

1↵i0i
n0n�⇣ ,

where 1 is an indicator function and ⇣ is a pre-specified cuto↵. The list of “key players” can be

found in the appendix. Under this definition, global di↵usion network is reduced to an unweighted

directed graph. Figure 12 illustrates the evolution of global di↵usion network. When ⇣ = 10�4,

the approximately-linear fitted line in the log-log plot suggests that the degree distribution

resembles a scale-free distribution22 and this line seems flattened out over time. When I pick a

smaller cuto↵ ⇣ = 10�5, the degree distribution becomes more interesting. In the last period,

the distribution is U-shaped with a very heavy right tail, suggesting that many country-industry

pairs play a significant role in global knowledge di↵usion. Similar to Kali and Reyes (2007),

Figure 13 plots the Lorenz curve of degree in knowledge di↵usion. I also plot import share for

comparison. The global di↵usion network is highly asymmetric where knowledge mainly comes

from a handful of countries.

[Figure 12 about here.]

[Figure 13 about here.]

The third centrality measure concerns substitutability of a country in the global di↵usion

network. Suppose that country n completely closes its border. In the absence of trade between

country n and the rest of the world, the structure of idea flows changes. A country’s importance

in technology di↵usion can be assessed by the change of TFP growth under this counter-factual.

Table 11 reports change of TFP growth from 1990 to 2010 if a given country becomes autarkic.

The second and fifth columns are the simple average of counter-factual TFP growth of the rest

of the world. Dropping a country from the global trade network always has a negative impact

on world TFP growth, although the TFP growth may accelerate for some countries under the

counter-factual. Consistent with the first centrality measure, US, Germany, and Japan remain

the top three countries that have the greatest impact on technology di↵usion. However, the

di↵erence between leading economies and laggards are no longer significant, because if a country’s

22However, it is a not a scale-free network, because the estimated scale parameter (slope of the fitted line) is
close to one, not in between two and three.
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trade partner becomes autarkic, this country can always find a second best from the rest of the

world. Taking into account endogenous change of trade pattern, the counter-factual exercise

suggests that substitutability of a country is not as high as is traditionally thought from the

perspective of technology di↵usion. On the other hand, the third and sixth columns indicate

that a country’s TFP growth is significantly dampened under autarky, and this is even true

for developed countries. The average decline of TFP growth of its own economy is comparable

between OECD and non-OECD economies.

[Table 11 about here.]

6.2 Dynamic Gains from Trade

Another important implication of the quantitative model is that idea flows give rise to dynamic

gains from trade. As opening up to trade exposes a country to exporters with better technol-

ogy, improved learning opportunity speeds up TFP growth and thus real income growth. To

decompose total gains from trade into static and dynamic components, I conduct two thought

experiments. I first consider the change of real income for a country to move from Autarky to the

level of openness of the period 2005 – 2010. This captures the standard static gains from trade.

On average the static gains from trade are about 20% of a country’s real income. This echoes

the earlier findings in the literature that static gains from trade are generally modest (Arkolakis

et al., 2012; Costinot and Rodŕıguez-Clare, 2014). Notice that static gains from trade decreases

with trade elasticity (✓) and elasticity of substitution (1/(1 � )) across industries. Therefore,

the static gains from trade become substantially larger if Cobb-Douglas aggregator is used for

final consumption goods ( = 0), and if higher trade elasticity is picked then the gains from

trade become much smaller23.

The second thought experiment concerns dynamic gains from trade. It is defined as the

percentage-point change of a country’s real income if this country learns from its trade partners

rather than only its domestic producers, conditional on the fact that in both scenarios it opens up

to international trade. In other words, the dynamic gains from trade are the additional welfare

gains for a country to move from autarky to openness in the sense of knowledge di↵usion. Similar

to earlier theoretical work (Redding, 1999), I calculate discounted sum of future real incomes to

measure dynamic e↵ects of international trade. The dynamic gains from trade account for on

average 6.07% of real GDP for OECD economies and 12.34% for non-OECD economies. Non-

OECD economies enjoy much higher dynamic gains because of the strong convergence e↵ects.

According to the baseline calibration, dynamic gains from trade are about one third of the static

gains from trade, but this should be treated as a lower bound. I use the baseline calibrated

di↵usion parameters (� = 0.285; ⌘ = 14.18) for calculation of all the future periods, which has

the implication that the TFP growth rate of the global economy converges to zero. If ⌘ is also

allowed to grow (as is suggested by data), the dynamic gains from trade will be even larger.

[Figure 14 about here.]

23For example, the gains from trade decline by two-thirds if ✓ = 8.28.
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7 Conclusion

In this paper, I build up a dynamic multi-industry model of international trade and technology

di↵usion to investigate the sources of comparative advantage. By putting industries into play,

my model generates quantitative implications on evolution of Ricardian comparative advantage.

Dynamic properties implied by the calibrated model is broadly consistent with key features in

the data: unconditional convergence and substantial turnover of export industries. Our empirical

results suggest that international technology di↵usion plays a more important role than domestic

technology di↵usion in shaping a country’s comparative advantage.

This paper can be extended in several dimensions. First, it would be of great interest to

incorporate multinational production into this framework. A large literature studies how multi-

national production a↵ects productivity of domestic firms, but little work has been done at the

industry level concerning how technology di↵uses through multinational production in a dynamic

general equilibrium framework. The main barrier is the availability of data. Even the most com-

prehensive industry-level database of multinational production only covers less than 10 years of

data and predominantly consists of OECD countries (Alviarez, 2015; Fukui and Lakatos, 2012).

Second, while the assumption of perfectly competitive markets buys tractability of the model,

it also eliminates the problem of free-riding that is identified as the major hurdle to successful

localization of foreign technology in developing countries (Hausmann and Rodrik, 2003). Intro-

ducing alternative market structures that lead to negative externality of knowledge di↵usion is

another promising avenue for future research. Last, since firms do not internalize the benefits

of idea flows, it opens the door for government intervention. Questions on optimal trade and

industrial policies call for a richer framework amenable for quantitative policy analysis.
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A List of Symbols

N, I number of countries, number of industries

wn,t, rn,t wage rate, rental rate

sn,t saving rate

Dn,t trade deficit

En,t total expenditure

In,t total investment

Yn,t, Y
i
n,t country-level, industry-level demand of final goods

Ln,t, L
i
n,t, `

i
n,t country-, industry-, variety-level input of labor

Kn,t, K
i
n,t, k

i
n,t country-, industry-, variety-level input of capital

Pn,t, P
i
n,t, p

i
n,t country-, industry-, variety-level price

Qi
n,t, q

i
n,t industry-level, variety level total demand

cin,t industry-level unit cost of an input bundle

F i
n,t industry-level productivity distribution (Fréchet)

Gi,D
n,t , G

i,F
n,t source distribution of intra-industry learning from domestic and foreign producers

Gii0,D
n,t , Gii0,F

n,t source distribution of inter-industry learning from domestic and foreign producers

zin,t variety-level productivity

mii0
n,t variety-level input of composite intermediate goods from industry i0

dinn0,t iceberg shipping cost from country n0 to n

 elasticity of substitution across tradeable industries = 1/(1� )

�n share of tradeable consumption

�n,t population growth rate

�n,t depreciation rate

�i Cobb-Douglas share of learning from other firms

⌫i variety of industry i

�i elasticity of substitution across varieties

✓i dispersion parameter of Fréchet distribution (trade elasticity)

⌧ ii
0

dispersion adjustment parameter in inter-industry learning

!i
n share parameter of industry i across tradeable goods

�iL, �iK variety-level labor share, capital share

�ii0
n variety-level input share from industry i0 to industry i

�i
n,t location parameter of Fréchet distribution (industrial productivity)

⌘in,t arrival rate of intra-industry learning from domestic and foreign producers

⌘ii
0

n,t arrival rate of inter-industry learning from domestic and foreign producers

⇡i
nn0,t share of expenditure on imports from country n0
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B Proofs and Theoretical Extensions

B.1 Instantaneous Equilibrium

Given labor and capital endowment {Ln}Nn=1 and {Kn}Nn=1, trade deficits {Dn}Nn=1, bilateral

industry-level trade costs {dinn0}N,N,I+1
n=1,n0=1,i=1 instantaneous equilibrium is obtained by solving

Equation 1 - 12 for total expenditures {En}Nn=1, wage rates {wn}Nn=1, rental rates {rn}Nn=1, in-

dustrial price levels {P i
n}

N,I+1
n=1,i=1, industrial final demand {Y i

n}
N,I+1
n=1,i=1, industrial unit costs of

input bundle, {cin}
N,I+1
n=1,i=1, industrial total demand {Qi

n}
N,I+1
n=1,i=1, industrial labor employment

{Li
n}

N,I+1
n=1,i=1, industrial capital stock {Ki

n}
N,I+1
n=1,i=1, and industrial trade flows {⇡i

nn0}N,N,I+1
n=1,n0=1,i=1.

There are in total N2(I + 1)+ 6N(I + 1)+ 3N unknowns. Equilibrium conditions 1 - 12 consist

of N2(I + 1)+ 6N(I + 1)+ 4N equations, but N equations are redundant, which can be seen as

follows

En = wnLn + rnKn +Dn

=
I+1X

i=1

 
�iL

NX

n0=1

P i
n0Qi

n0⇡i
n0n + �iK

NX

n0=1

P i
n0Qi

n0⇡i
n0n + P i

nQ
i
n �

NX

n0=1

P i
n0Qi

n0⇡i
n0n

!

=
I+1X

i=1

 
�iL

NX

n0=1

P i
n0Qi

n0⇡i
n0n + �iK

NX

n0=1

P i
n0Qi

n0⇡i
n0n �

NX

n0=1

P i
n0Qi

n0⇡i
n0n

!

+
I+1X

i=1

 
I+1X

i0=1

�i0i
n

NX

n0=1

P i0

n0Qi0

n0⇡i0

n0n + P i
nY

i
n

!

=
I+1X

i=1

P i
nY

i
n

B.2 Derivation of the Law of Motion of Industry-level Productivity

Recall that the general form of law of motion of industry-level productivity under multiple

channels of idea flows is given by

d�i
n,t

dt
=
X

s

⌘s
Z 1

0

x�i✓idGi,s
n,t(x). (B.1)

In light of Buera and Oberfield (2016), I first derive expression of
R1
0 x�i✓idGi,s

n,t(x) for each

channel.
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1. Intra-industry learning from domestic and foreign sellers
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. (B.2)

2. Inter-industry learning from domestic and foreign sellers
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. (B.3)

In the benchmark case, ✓i = ✓ for any industry i. Given Equation B.2 and B.3, I obtain the

law-of-motion of productivity as Equation 14.

B.3 Adjustment of Industry-level Productivity Dispersion

Consider firms in industry i learn from firms in industry i0. Once a new insight is drawn (with

arrival rate ⌘̃), the actual productivity is given by z⌧
ii0�i

G z1��i

H where zG is a random drawn from

the source distribution Gii0
n,t(·) and zH is drawn from an exogenous distribution H i(·). With the

adjustment parameter ⌧ ii
0
of industrial productivity dispersion, the law of motion of industrial
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productivity can be rewritten as

d

dt
lnF i

n,t(z) = �⌘̃

Z 1

0

"
1�Gii0

n,t

 
z1/(�

i⌧ ii
0
)

x(1��i)/(�i⌧ ii0 )

!#
dH i(x).

Assume that H i(z) = 1� (z/z0)�✓̃i . Let ✓i ⌘ ✓̃i/(1��i) and normalize ⌘ ⌘ ⌘̃z✓̃0 to be a constant.

It can be shown that

lim
z0!0

d

dt
lnF i

n,t(z) = �⌘z�✓i
Z 1

0

x�i✓i⌧ ii
0
dGi

n,t(x),

if limx!1[1 � Gi
n,t(x)]x

�i✓i⌧ ii
0
= 0. Therefore, the industry-level productivity distribution still

follows Fréchet with the law of motion of the position parameter �i
n,t given by

d�i
n,t

dt
= ⌘

Z 1

0

x�i✓i⌧ ii
0
dGi

n,t(x). (B.4)

Let ⌧ ii
0
= ✓i

0
/✓i. Equation B.3 is modified as follows

Z 1

0

x�i✓idGii0

n,t(z) = �(1� �i)
NX

m=1

⇡i0

nm

1��i

�i0

m

�i

(B.5)

which coincide the results under the assumption of homogeneous industrial productivity disper-

sion.

C Data Description

C.1 Sample

Following Levchenko and Zhang (2016), my sample consists of 72 countries and 17 manufacturing

industries. The original data covers from 1963 to 2011. Details of the sample can be found in

Table A1 and A2. I treat each five-year window as one period. To maximize the number

of countries, especially non-OECD countries, the baseline sample is chosen to start from 1990

and end in 2010, so there are four periods in the baseline sample: 1991-1995, 1996-2000, 2001-

2005, and 2006-2010. Within each five-year window, I calculate the median of each trade and

production variable.

[Table A1 about here.]

[Table A2 about here.]

[Table A3 about here.]
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C.2 Trade data

The trade data is obtained from World Trade Flows bilateral data (Feenstra et al., 2005) and

further extended using UN comtrade database for post-2000 periods. The original trade sample

is organized at the level of 4-digit SITC code (rev. 2). It is aggregated up to the level of 2-digit

ISIC code (rev. 3) by using two concordances from 4-digit SITC (rev. 2) to 3-digit ISIC (rev.

2) and from 3-digit ISIC24 (rev. 2) to 2-digit ISIC25 (rev. 3). By restricting the sample to 72

countries, about one quarter of the total trade volume is excluded. I also include zero trade flows

in the sample whenever PPML is employed in estimation.

C.3 Production data

The production data is obtained from UNIDO INDSTAT 2 database (version 2015). The

database includes seven production variables at the cross-country industry level: output, value

added, wages and salaries, gross fixed capital formation, employment, female employment, and

number of establishments. Since the database contains information both at the industry level

and for the whole manufacturing sector. Observations are dropped if the aggregated manufactur-

ing total is more than 20% larger or smaller than the reported total. For countries with missing

production data but non-missing trade data, I impute industrial output level using linear inter-

polation and extrapolation. Observations are dropped if total output (original or imputed) is

smaller than total export.

C.4 Other data

Bilateral variables. CEPII gravity database (Head et al., 2013) provides me with most of

the bilateral gravity variables: bilateral distance weighted by population, dummy variables of

contiguity, common o�cial primary language, common currency union, and free trade areas. The

database is updated until 2006, so it is extended to incorporate new regional trade agreements26

and currency unions from 2006 onwards.

Production parameters. For tradeable industries, share of wage bill �iL is obtained by the

cross-country median of industry-level wage and salary payment as share of industrial output,

and share of rental payment �iK is obtained by the cross-country median of di↵erence between

value added and wage bill as share of output. These variables all come from UNIDO INDSTAT

database. For the nontradeable industry, �iL and �iK are obtained from US 1997 I-O table. I

also use US 1997 I-O table to obtain country-invariant I-O coe�cients �ii0 and cross check �iL

and �iK of tradeable industries obtained from cross-country data.

I also obtain country-specific and time-variant I-O tables from WIOD database (Timmer et

al., 2015). Among 72 economies in my sample, 34 economies are included in WIOD database

(Brazil, Bulgaria, Canada, China, Czech, Denmark, Finland, France, Germany, Greece, Hungary,

24Source: Marc Muendler’s personal website, last retrieved: 8/11/2015.
25Source: United Nations Statistics Division, last retrieved: 8/15/2015.
26Source: WTO Regional Trade Agreements Database, last retrieved: 6/20/2016.
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India, Indonesia, Ireland, Italy, Japan, Korea, Mexico, Netherlands, Poland, Portugal, Romania,

Russia, Solvakia, Slovenia, Spain, Sweden, Taiwan, Turkey, UK, USA). I apply the rest-of-world

(ROW) I-O table to the rest 38 economies. The database covers the period from 1995 to 2011.

The data is at 2-digit ISIC level, which is slightly modified to match the industry aggregation of

the sample.

Preference parameters. share parameters of tradeable goods !i is obtained from Levchenko

and Zhang (2016). For the share of tradeable goods consumption �n, I first aggregate up con-

sumption shares of current-price durable, semi-durable, and non-durable goods using national

accounts from OECD countries27. Then I estimate the tradeable consumption share of other

countries by fitting a linear relationship between the share of manufacturing consumption and

GDP per capita. Elasticity of substitution across tradeable consumption goods 1/(1�) is given

by 2.

Relative cost terms. To calculate cross-country wage rate wn,t, I first obtain aggregate labor

income by multiplying PPP-adjusted real GDP by labor income share where both variables are

available in PWT. If labor income share is missing, I use the share of wage bills in value-added

from INDSTAT2 if available and fill out the rest missing observations by interpolation. The

total e↵ective employment count is given by the product of the number of persons engaged

and average country-level human capital where both variables also come from PWT. For very

few countries (such as Ethiopia and Nigeria), I fill out their human capital by fitting a linear

relationship between human capital and real GDP per capita. As a crude measure, rental rate

rn,t is given by the non-labor income divided by real capital stock. Relative price indices of

tradeable industries can be obtained from competitiveness measure (estimated as fixed e↵ect in

the gravity equation) and domestic absorption rate (obtained from bilateral trade and output

data) according to Equation 20. Relative price in the nontradeable sector is obtained from

the International Comparison Program. I use observations from seven benchmark years (1970,

1975, 1980, 1985, 1996, 2005, and 2011) to fit a linear relationship between nontradeable price

index and GDP per capita28. Before plugging in these relative terms for Equation 21, the last

complication arises from the fact that competitiveness estimates may not be available for each

industry while it is essential for calculation of relative costs due to input-output linkages. To

address this, I scale up input shares of those industries who competitiveness estimates are non-

missing proportionally so that the sum of input shares remains equal to one. All variables are

normalized by US levels.

US TFP series. US industry-level TFP in the tradeable sector is obtained from NBER-CES

Manufacturing Industry Database. The TFP series in the nontradeable sector is obtained in

two steps. I first calculate the nontradeable TFP for the benchmark year, 2005, by combining

information from NBER-CES database and PWT. Then the time series is obtained by using

TFP growth rate in the US nontradeable sector from World-KLEMS database.

Country-specific variables: PWT also gives me the following country-specific variables: labor

27Source: OECD Final Consumption Expenditure of Households (Detailed National Accounts, SNA 2008), last
retrieved: 6/20/2016.

28A variety of alternative fitting schemes are discussed in detail by Feenstra et al. (2015).
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and capital endowment Ln,t and Kn,t, saving rate Sn,t/(wn,tLn,t + rn,tKn,t), investment rate

In,t/(wn,tLn,t+ rn,tKn,t), depreciation rate �n,t, country-level price index Pn,t, real GDP Yn,t, and

country-level TFP growth rate.

Patent citation: The NBER US patent citation data (Hall et al., 2001) contains pairwise patent

citation information from 1976 to 2006. I construct the citation matrix at 2-digit ISIC level by

mapping international patent classification code to US SIC code29 and then to ISIC code. The

time-variant di↵usion matrix is simply constructed by calculating the share of inter-industry

patent citation for each 5-year window.

D Additional Tables

[Table A4 about here.]

[Table A5 about here.]

[Table A6 about here.]

[Table A7 about here.]

29The concordance can be found in Brian Silverman’s personal website, last retrieved: 8/19/2016.
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Figure 1: Export Share: 1990 versus 2010
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Notes: (1) The data source is comtrade (3-digit SITC, Rev. 2); (2) I pick top 10 industries in terms of export share

in 2009-2011 and compare their export shares in 1989-1991. The only exception is that I omit co↵ee industry in

Ethiopia (export share drops from 61% to 34%) for better scaling.
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Figure 2: Transition Matrix from 1990 to 2010

Notes: (1) The data source is comtrade (3-digit SITC, Rev. 2); (2) Industries are ranked according to RCA

index. The ij-th entry is the share of the i-th percentile industries in 2009-2011 that were in j-th percentile in

1989-1991; (3) Due to skewness in trade share, percentiles are divided unevenly.
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Figure 3: Convergence to Trade Partners
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RCA index is all three-year average (1989-1991, 2009-2011) and controlled for industry and country fixed e↵ects.
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Figure 4: Evolution of Median Trade Costs: Pooled and by-Industry, 1960 - 2010
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Figure 5: Unconditional Convergence: Model versus Data
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Figure 6: Share of Top Export Industries

0
1

2
3

4
D

en
si

ty

.2 .4 .6 .8 1
Export share of top 1 industry, simulated

mean=0.41, median=0.36

0
1

2
3

4
D

en
si

ty

.2 .4 .6 .8 1
Export share of top 1 industry, actual

mean=0.37, median=0.32

0
1

2
3

4
D

en
si

ty

.4 .6 .8 1
Export share of top 3 industries, simulated

mean=0.68, median=0.67

0
1

2
3

4
D

en
si

ty

.2 .4 .6 .8 1
Export share of top 3 industries, actual

mean=0.66, median=0.65

44



Figure 7: Contribution to Productivity Growth: 1990 - 2010
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Figure 8: Contribution to Productivity Growth: OECD versus non-OECD
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Figure 9: Contribution to Productivity Growth by Industry
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Figure 10: Contribution to Productivity Growth versus �
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Figure 11: Contribution to Productivity Growth: 1990 - 2010
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Figure 12: Degree Distribution of Global Di↵usion Network: 1990 - 2010
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Notes: (1) The di↵usion network is constructed using di↵usion parameters obtained from the baseline calibration

(Method II); (2) The cuto↵ 10�4 is about the average contribution to global productivity growth and 10�5 is the

75-percentile.
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Figure 13: Lorenz Curve of Degree: 1990 - 2010
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Notes: (1) The di↵usion network is constructed using di↵usion parameters obtained from the baseline calibration

(Method II); (2) The average contribution to global productivity growth is about 1.4%; (3) Country-level degree

data are pooled together for all three periods.
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Figure 14: Gains from Trade
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Note: (1) The benchmark period is 2000 - 2005, and di↵usion parameters are borrowed from benchmark cali-

bration Method I; (3) The annual discount rate is 3%, and the results are robust for the plausible range of annual

discount rates (1% to 10%).
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Table 1: Goodness of Fit

Period Data Mean Model Mean Data Median Model Median Corr.

Panel I: Actual TFP
Wage (2005 US $)
1990-1995 6,165 5,071 4,647 3,995 0.96
1996-2000 6,451 5,337 4,759 4,407 0.96
2001-2005 6,651 5,344 4,728 3,958 0.94
2006-2010 6,934 5,993 5,053 4,116 0.93

Rent
1990-1995 0.18 0.16 0.17 0.16 0.66
1996-2000 0.18 0.15 0.16 0.14 0.61
2001-2005 0.19 0.14 0.16 0.13 0.40
2006-2010 0.20 0.12 0.17 0.12 0.05

Bilateral Trade Share
1990-1995 4.5e-3 3.8e-3 0 0 0.89
1996-2000 5.2e-3 4.4e-3 1.5e-5 1.7e-5 0.91
2001-2005 4.9e-3 4.2e-3 4.0e-5 3.7e-5 0.89
2006-2010 4.6e-3 3.9e-3 3.7e-5 1.3e-5 0.87

Domestic Absorption Share
1990-1995 0.61 0.66 0.67 0.75 0.91
1996-2000 0.55 0.62 0.59 0.69 0.92
2001-2005 0.51 0.56 0.54 0.63 0.92
2006-2010 0.47 0.52 0.50 0.59 0.90

Panel II: Model-implied TFP
Wage (2005 US $)
1990-1995 6,165 5,127 4,647 4,044 0.97
1996-2000 6,451 5,350 4,759 4,302 0.97
2001-2005 6,651 5,717 4,728 4,485 0.96
2006-2010 6,934 5,872 5,053 4,517 0.94

Rent
1990-1995 0.18 0.16 0.17 0.16 0.67
1996-2000 0.18 0.19 0.16 0.16 0.73
2001-2005 0.19 0.21 0.16 0.18 0.77
2006-2010 0.20 0.24 0.17 0.20 0.72

Bilateral Trade Share
1990-1995 4.5e-3 3.8e-3 0 0 0.89
1996-2000 5.2e-3 4.7e-3 1.5e-5 0.9e-5 0.86
2001-2005 4.9e-3 4.5e-3 4.0e-5 3.2e-5 0.83
2006-2010 4.6e-3 4.0e-3 3.7e-5 1.6e-5 0.78

Domestic Absorption Share
1990-1995 0.61 0.66 0.67 0.75 0.91
1996-2000 0.55 0.64 0.59 0.70 0.62
2001-2005 0.51 0.64 0.54 0.70 0.42
2006-2010 0.47 0.66 0.50 0.71 0.27

Note: Goodness of fit is reported for the baseline sample. Panel I reports simulation using

actual TFP estimates. Panel II reports simulation using TFP series obtained from method

I.
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Table 2: Unconditional Convergence: Model versus Data

(1) (2) (3) (4) (5) (6)

Variable RCA Index TFP TFP TFP Trade Share
Export

Capability
Sample Full Full OECD Non-OECD Full Full

Data -0.310 -0.258 -0.243 -0.342 -0.065 -0.248
(0.023)*** (0.037)*** (0.062)*** (0.054)*** (0.011)*** (0.024)***

Method I -0.395 -0.287 -0.186 -0.358 -0.072 -0.363
(� = 0.285) (0.035)*** (0.022)*** (0.033)*** (0.028)*** (0.009)*** (0.040)***

Method II -0.394 -0.282 -0.177 -0.352 -0.071 -0.361
(0.035)*** (0.021)*** (0.032)*** (0.027)*** (0.009)*** (0.040)***

Method III -0.383 -0.257 -0.158 -0.325 -0.066 -0.351
(� = 0.240) (0.035)*** (0.021)*** (0.031)*** (0.027)*** (0.009)*** (0.041)***

Method IV -0.385 -0.268 -0.181 -0.331 -0.068 -0.357
(0.036)*** (0.022)*** (0.038)*** (0.027)*** (0.009)*** (0.042)***

Method I -0.396 -0.286 -0.179 -0.357 -0.071 -0.358
Fix � = 0.5 (0.035)*** (0.022)*** (0.031)*** (0.027)*** (0.009)*** (0.040)***

Method I -0.389 -0.283 -0.170 -0.355 -0.073 -0.358
Fix � = 0.7 (0.036)*** (0.021)*** (0.029)*** (0.027)*** (0.009)*** (0.040)***

Exporter FE Yes Yes Yes Yes Yes Yes
Importer FE Yes
Industry FE Yes Yes Yes Yes Yes Yes

No. of Obs. 967 992 483 509 83,464 952

Notes: (1) Growth rate of each variable is calculated between 1990–1995 and 2005-2010. The table only reports

the convergence parameter ↵ specified in Equation 23; (2) Top and bottom 1% observations in terms of growth

rate are dropped; (3) Robust standard errors are reported in the parentheses. *, **, and *** indicate significance

at the 10%, 5%, and 1% levels, respectively.
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Table 3: Transition Probability in TFP: Model versus Data

Data Model

Full Sample
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
90

R
an

k 1-4 0.51 0.22 0.16 0.12

19
90

R
an

k 1-4 0.81 0.17 0.02 0.00
5-8 0.28 0.35 0.25 0.12 5-8 0.11 0.63 0.24 0.02
9-12 0.13 0.31 0.30 0.26 9-12 0.02 0.14 0.53 0.31
13-17 0.07 0.10 0.23 0.59 13-17 0.05 0.05 0.16 0.73

OECD Countries
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
90

R
an

k 1-4 0.51 0.22 0.18 0.09

19
90

R
an

k 1-4 0.89 0.11 0.00 0.00
5-8 0.27 0.38 0.25 0.10 5-8 0.05 0.79 0.16 0.00
9-12 0.11 0.29 0.30 0.30 9-12 0.01 0.07 0.73 0.20
13-17 0.09 0.09 0.21 0.61 13-17 0.04 0.03 0.09 0.84

Non-OECD Countries
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
90

R
an

k 1-4 0.49 0.21 0.15 0.14

19
90

R
an

k 1-4 0.74 0.22 0.04 0.00
5-8 0.29 0.33 0.25 0.13 5-8 0.15 0.49 0.31 0.04
9-12 0.14 0.33 0.29 0.24 9-12 0.03 0.19 0.38 0.41
13-17 0.06 0.11 0.25 0.59 13-17 0.07 0.08 0.22 0.64

Full Sample
2010 Rank 2010 Rank

1 2-3 4-5 6-17 1 2-3 4-5 6-17

19
90

R
an

k 1 0.44 0.24 0.07 0.25

19
90

R
an

k 1 0.75 0.21 0.01 0.03
2-3 0.14 0.25 0.15 0.46 2-3 0.07 0.68 0.14 0.11
4-5 0.04 0.25 0.21 0.50 4-5 0.01 0.12 0.56 0.31
6-17 0.02 0.06 0.10 0.82 6-17 0.01 0.02 0.05 0.93

Notes: Each transition matrix is constructed using 1990-1995 and 2005-2010 sample.
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Table 4: Unconditional Convergence: Alternative Di↵usion Matrices

(1) (2) (3) (4) (5) (6)

Variable RCA Index TFP TFP TFP Trade Share
Export

Capability
Sample Full Full OECD Non-OECD Full Full

Data -0.310 -0.252 -0.239 -0.320 -0.066 -0.248
(0.023)*** (0.037)*** (0.062)*** (0.053)*** (0.011)*** (0.024)***

Country-specific I-O Table

Method I -0.398 -0.304 -0.200 -0.372 -0.076 -0.362
(� = 0.319) (0.036)*** (0.021)*** (0.037)*** (0.026)*** (0.010)*** (0.038)***

Method II -0.399 -0.295 -0.191 -0.362 -0.078 -0.366
(0.036)*** (0.020)*** (0.034)*** (0.026)*** (0.010)*** (0.039)***

Method III -0.387 -0.276 -0.175 -0.342 -0.072 -0.343
(� = 0.244) (0.036)*** (0.020)*** (0.036)*** (0.026)*** (0.009)*** (0.037)***

Method IV -0.393 -0.280 -0.175 -0.349 -0.074 -0.347
(0.036)*** (0.021)*** (0.034)*** (0.027)*** (0.009)*** (0.038)***

Patent Citation Matrix

Method I -0.368 -0.282 -0.194 -0.334 -0.065 -0.322
(� = 0.319) (0.036)*** (0.023)*** (0.040)*** (0.028)*** (0.009)*** (0.040)***

Method II -0.366 -0.282 -0.192 -0.336 -0.065 -0.320
(0.036)*** (0.024)*** (0.040)*** (0.028)*** (0.009)*** (0.040)***

Method III -0.360 -0.251 -0.171 -0.300 -0.063 -0.310
(� = 0.397) (0.036)*** (0.022)*** (0.038)*** (0.027)*** (0.009)*** (0.039)***

Method IV -0.356 -0.273 -0.202 -0.313 -0.061 -0.316
(0.037)*** (0.021)*** (0.045)*** (0.028)*** (0.009)*** (0.041)***

Exporter FE Yes Yes Yes Yes Yes Yes
Importer FE Yes
Industry FE Yes Yes Yes Yes Yes Yes

No. of Obs. 967 992 483 509 83,464 952

Notes: (1) Growth rate of each variable is calculated between 1990–1995 and 2005-2010. The table only reports

the convergence parameter ↵ specified in Equation 23; (2) Top and bottom 1% observations in terms of growth

rate are dropped; (3) TFP estimates are based on country-specific I-O tables; (4) Robust standard errors are

reported in the parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 5: Unconditional Convergence: 1970 - 2010

(1) (2) (3) (4) (5)
Variable RCA Index TFP TFP TFP Import Share
Sample Full Full OECD Non-OECD Full

Data -0.500 -0.596 -0.533 -0.665 -0.746
(0.028)*** (0.048)*** (0.054)*** (0.075)*** (0.045)***

Benchmark

Method II -0.493 -0.356 -0.287 -0.454 -0.752
(0.038)*** (0.025)*** (0.045)*** (0.030)*** (0.049)***

Method IV -0.482 -0.334 -0.263 -0.432 -0.732
(0.036)*** (0.025)*** (0.044)*** (0.030)*** (0.050)***

Country-specific I-O Tables

Method II -0.492 -0.363 -0.287 -0.439 -0.747
(0.037)*** (0.025)*** (0.043)*** (0.029)*** (0.049)***

Method IV -0.485 -0.340 -0.260 -0.419 -0.729
(0.038)*** (0.025)*** (0.042)*** (0.030)*** (0.050)***

Patent Citation Matrix

Method II -0.479 -0.357 -0.294 -0.455 -0.723
(0.037)*** (0.029)*** (0.048)*** (0.038)*** (0.050)***

Method IV -0.473 -0.340 -0.277 -0.443 -0.733
(0.039)*** (0.029)*** (0.048)*** (0.038)*** (0.053)***

Country FE Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes

No. of Obs. 782 732 377 355 908

Notes: (1) Growth rate of each variable is calculated between 1970–1975 and 2005-2010. The table only

reports the convergence parameter ↵ specified in Equation 23; (2) Top and bottom 1% observations

in terms of growth rate are dropped; (3) TFP estimates are based on country-specific I-O tables; (4)

Robust standard errors are reported in the parentheses. *, **, and *** indicate significance at the

10%, 5%, and 1% levels, respectively.
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Table 6: Unconditional Convergence in TFP by Industry: 1970 - 2010

(1) (2) (3) (4)
Data Benchmark WIOD Patent Obs.

Food, tobacco -0.388 -0.417 -0.369 -0.482 51
(0.082)*** (0.042)*** (0.042)*** (0.040)***

Textiles -0.344 -0.540 -0.516 -0.502 49
(0.162)** (0.069)*** (0.072)*** (0.070)***

Apparel, footwear -0.458 -0.104 -0.091 -0.085 35
(0.137)*** (0.015)*** (0.014)*** (0.013)***

Wood -0.188 -0.441 -0.409 -0.478 48
(0.088)** (0.038)*** (0.037)*** (0.033)***

Paper -0.349 -0.543 -0.659 -0.533 49
(0.072)*** (0.041)*** (0.032)*** (0.041)***

Printing, Publishing -0.126 -0.011 -0.017 -0.008 49
(0.098) (0.002)*** (0.003)*** (0.002)***

Coke, petroleum 0.157 -0.779 -0.652 -0.908 51
(0.143) (0.035)*** (0.050)*** 0.015)***

Chemical -0.360 -0.357 -0.292 -0.313 43
(0.089)*** (0.033)*** (0.031)*** (0.031)***

Rubber, plastic -0.461 -0.267 -0.281 -0.215 48
(0.090)*** (0.033)*** (0.034)*** (0.028)***

Non-metallic mineral -0.339 -0.163 -0.149 -0.164 47
(0.064)*** (0.023)*** (0.022)*** (0.022)***

Basic metals -0.118 -0.429 -0.449 -0.408 42
(0.100) (0.023)*** (0.027)*** (0.022)

Fabricated metal -0.159 -0.172 -0.143 -0.122 48
(0.068)** (0.016)*** (0.015)*** (0.014)***

Machinery, equipment -0.311 -0.568 -0.597 -0.483 41
(0.125)** (0.047)*** (0.048)*** (0.053)***

Electronics -0.370 -0.349 -0.415 -0.274 40
(0.114)*** (0.045)*** (0.052)*** (0.041)***

Medical, precision 0.069 -0.026 -0.029 -0.012 33
(0.171) (0.013)** (0.014)** (0.006)**

Vehicles -0.230 -0.393 -0.409 -0.279 46
(0.152) (0.031)*** (0.031)*** (0.026)***

Other manufacturing -0.310 -0.075 -0.078 -0.055 47

(0.140)** (0.024)*** (0.026)*** (0.017)***

Notes: (1) Calibration (Method III) is performed on the sample from 1970 to 2010 estimated using

country-specific TFP (2) Robust standard errors are reported in the parentheses. *, **, and ***

indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table 7: Calibration of Industry-specific Di↵usion Parameter �i

(1) (2)
Method I Method III

Food, tobacco 0.361 0.364

Textiles 0.368 0.383

Apparel, footwear 0.284 0.337

Wood 0.299 0.424

Paper 0.284 0.402

Printing, Publishing 0.349 0.305

Coke, petroleum 0.312 0.448

Chemical 0.443 0.353

Rubber, plastic 0.421 0.331

Non-metallic mineral 0.289 0.379

Basic metals 0.387 0.343

Fabricated metal 0.312 0.317

Machinery, equipment 0.455 0.336

Electronics 0.320 0.306

Medical, precision 0.347 0.307

Vehicles 0.451 0.304

Other manufacturing 0.280 0.334

Notes: (1) Calibration is performed on the baseline sam-

ple (2) �i is industry-specific but time-invariant
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Table 8: Transition Probability in TFP: Model versus Data

Data Model

Full Sample
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
70

R
an

k 1-4 0.39 0.22 0.17 0.21

19
70

R
an

k 1-4 0.83 0.14 0.03 0.00
5-8 0.24 0.30 0.20 0.26 5-8 0.09 0.63 0.25 0.04
9-12 0.21 0.29 0.26 0.24 9-12 0.04 0.14 0.54 0.28
13-17 0.13 0.15 0.29 0.43 13-17 0.04 0.08 0.15 0.74

OECD Countries
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
70

R
an

k 1-4 0.37 0.26 0.14 0.23

19
70

R
an

k 1-4 0.90 0.09 0.01 0.00
5-8 0.28 0.27 0.23 0.22 5-8 0.04 0.82 0.12 0.02
9-12 0.19 0.31 0.25 0.25 9-12 0.02 0.04 0.78 0.16
13-17 0.13 0.13 0.30 0.44 13-17 0.03 0.04 0.07 0.86

Non-OECD Countries
2010 Rank 2010 Rank

1-4 5-8 9-12 13-17 1-4 5-8 9-12 13-17

19
70

R
an

k 1-4 0.40 0.19 0.21 0.20

19
70

R
an

k 1-4 0.77 0.18 0.05 0.00
5-8 0.20 0.33 0.18 0.30 5-8 0.13 0.47 0.35 0.06
9-12 0.23 0.28 0.27 0.23 9-12 0.06 0.22 0.34 0.38
13-17 0.13 0.17 0.28 0.42 13-17 0.04 0.11 0.21 0.65

Notes: Each transition matrix is constructed using 1970-1975 and 2005-2010 sample.
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Table 9: Key Players: Direct Contribution to TFP Growth

Simple Average (%) Weighted Average (%)
Top 5 “BRICS” Top 5 “BRICS”

Benchmark

USA 11.29 Brazil 2.16 USA 20.88 Brazil 1.77
Germany 7.52 Russia 1.28 Japan 18.31 Russia 0.70
Japan 6.95 India 1.77 Germany 8.23 India 1.15
Italy 5.26 China 3.78 Italy 5.10 China 5.43
France 4.73 S. Africa 1.13 France 4.88 S.Africa 0.48

Country-specific I-O

USA 11.64 Brazil 2.09 USA 20.49 Brazil 1.70
Germany 7.71 Russia 1.21 Japan 18.38 Russia 0.67
Japan 7.39 India 1.74 Germany 8.09 India 1.11
Italy 5.49 China 3.74 France 5.05 China 5.23
France 4.87 S. Africa 1.06 Italy 5.02 S.Africa 0.48

Patent Citation

USA 10.64 Brazil 2.17 USA 20.39 Brazil 1.73
Germany 7.24 Russia 1.34 Japan 17.84 Russia 0.76
Japan 6.53 India 1.86 Germany 7.98 India 1.16
Italy 5.38 China 3.68 Italy 5.11 China 5.41
UK 4.67 S. Africa 1.16 France 4.93 S.Africa 0.51

Note: This table covers the period from 1990 to 2010. Centrality measures are

calculated using di↵usion parameters obtained from calibration and actual trade

and production data. I obtain similar rankings if simulated trade and production

data is used instead.
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Table 10: Key Players: Direct Contribution to TFP Growth

Simple Average (%) Weighted Average (%)
Country Industry Contribution Country Industry Contribution

Benchmark

USA Measurement 2.23 Japan Vehicles 3.91
Japan Vehicles 1.81 USA Vehicles 3.57
USA Machinery 1.44 USA Measurement 2.98
USA Vehicles 1.40 Japan Electronics 2.98
USA Electronics 1.27 USA Food 2.75
Germany Machinery 1.11 Japan Machinery 2.72
Japan Electronics 1.09 USA Machinery 1.84
Germany Vehicles 1.07 USA Printing 1.75
Germany Measurement 1.07 Germany Vehicles 1.74
Japan Machinery 1.05 USA Electronics 1.65

Country-specific I-O

USA Measurement 2.26 Japan Electronics 3.86
USA Electronics 1.97 Japan Vehicles 3.50
Japan Electronics 1.74 USA Measurement 3.34
USA Machinery 1.55 USA Vehicles 3.08
Japan Vehicles 1.42 Japan Machinery 2.48
Germany Machinery 1.18 USA Food 2.38
Japan Machinery 1.16 USA Electronics 2.13
Germany Electronics 1.12 USA Machinery 1.74
USA Vehicles 1.10 USA Printing 1.55
Germany Measurement 1.06 Germany Vehicles 1.48

Patent Citation

USA Measurement 1.90 USA Measurement 3.24
USA Electronics 1.16 Japan Electronics 2.93
Japan Vehicles 1.12 Japan Vehicles 2.17
USA Machinery 1.07 USA Vehicles 2.03
Japan Electronics 1.05 Japan Machinery 1.94
USA Chemical 0.94 USA Food 1.93
Germany Measurement 0.89 USA Printing 1.78
USA Vehicles 0.86 Japan Printing 1.72
Germany Machinery 0.83 USA Chemicals 1.68
Japan Machinery 0.83 Japan Fabr. Metals 1.65

Note: This table covers the period from 1990 to 2010. Centrality measures are calculated using

di↵usion parameters obtained from calibration and actual trade and production data. I obtain

similar rankings if simulated trade and production data is used instead.
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Table 11: Key-Player: Counter-factual Change of TFP Growth

Change of TFP Growth from 1990 to 2010 (%)
OECD World Average Own Non-OECD World Average Own

Japan -5.81 -27.89 Taiwan -3.50 -25.82
USA -5.13 -44.70 Brazil -1.63 -50.60
Germany -3.75 -57.31 India -1.42 -47.64
France -2.82 -54.58 South Africa -1.38 -54.21
Italy -2.78 -50.65 Malaysia -1.37 -33.84
UK -2.71 -59.05 Russia -1.37 -63.56
Canada -2.51 -52.01 Thailand -1.36 -55.31
Korea -2.16 -48.09 Indonesia -1.35 -45.46
Spain -2.09 -54.34 Ukraine -1.28 -58.68
Switzerland -1.96 -26.61 Egypt -1.25 -60.17
Average -1.94 -52.15 Average -1.18 -52.20

Note: This table computes the percentage change of TFP growth by assuming that one country

becomes autarkic. The di↵usion parameter is from the method II of the baseline calibration. The

world average decline of TFP growth is weighted by PPP-adjusted GDP.
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Table A1: Sample Coverage

Non-OECD Year Non-OECD Year Non-OECD Year Non-OECD Year
Argentina 80-11 Bangladesh 72-07 Bolivia 63-11 Brazil 80-11
Bulgaria 90-11 China 73-11 Colombia 63-11 Costa Rica 63-11
Ecuador 63-11 Egypt 63-11 El Salvador 63-11 Ethiopia 80-11
Fiji 63-11 Ghana 63-11 Guatemala 63-11 Honduras 63-11
India 63-11 Indonesia 63-11 Jordan 63-11 Kazakhstan 92-11
Kenya 63-11 Malaysia 63-11 Mauritius 63-11 Nigeria 63-11
Pakistan 63-11 Peru 80-11 Philippines 63-11 Romania 90-11
Russia 96-11 Senegal 70-11 S. Africa 63-11 Sri Lanka 63-11
Taiwan 73-11 Tanzania 63-11 Thailand 63-11 Trinidad Tbg 63-10
Ukraine 92-11 Uruguay 63-11 Venezuela 63-11 Viet Nam 91-11

OECD Year OECD Year OECD Year OECD Year
Australia 63-11 Austria 63-11 Belgium-Lux 63-11 Canada 63-11
Chile 63-11 Czech Rep 93-11 Denmark 63-11 Finland 63-11
France 63-11 Germany 91-11 Greece 63-11 Hungary 90-11
Iceland 63-11 Ireland 63-11 Israel 63-11 Italy 65-11
Japan 63-11 Korea Rep 63-11 Mexico 63-11 Netherlands 63-11
New Zealand 63-11 Norway 63-11 Poland 90-11 Portugal 63-11
Slovakia 93-11 Slovenia 92-11 Spain 63-11 Sweden 63-11
Switzerland 80-11 Turkey 63-11 UK 63-11 USA 58-11
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Table A2: Tradeable Industries

ISIC (Rev. 3) Industry Description
15-16 Food products and beverages, tobacco products
17 Textiles
18-19 Wearing apparel, leather, luggage, footwear
20 Wood products except furniture, straw and plaiting materials
21 Paper and paper products
22 Publishing, printing and reproduction of recorded media
23 Coke, refined petroleum products and nuclear fuel
24 Chemicals and chemical products
25 Rubber and plastic products
26 Other non-metallic mineral products
27 Basic metals
28 Fabricated metal products, except machinery and equipment
29-30 O�ce, accounting and computing machinery, other machinery
31-32 Electrical machinery, communication equipment
33 Medical, precision and optical instruments, watches and clocks
34-35 Transport equipment
36 Furniture, other manufacturing
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Table A3: Construction of Variables and Data Sources

Variables/Parameters Data Source & Construction Method
Bilateral trade share ⇡i

nn0,t UN Comtrade & UNIDO INDSTAT2
Trade deficit Dn,t UN Comtrade
Trade in value-added TiVA database (OECD.STAT)
Labor income share �iLt UNIDO INDSTAT2, (wage bill)/(industrial output)
Capital income share �iKt UNIDO INDSTAT2, (value-added � wage bill)/(industrial output)
Input-output coe�cients �ii

0
n,t BEA 1997 I-O accounts (grouped into 2-digit ISIC Rev.3); WIOD

Labor supply Ln,t Penn World Table
Capital stock Kn,t Penn World Table
Wage rate wn,t Penn World Table, (labor income)/(employment count)
Rental rate rn,t Penn World Table, (total income - labor income)/(capital)

World Development Indicators; Caselli and Feyrer (2007)
Saving rate sn,t Penn World Table, implied by capital series and depreciation rate
Non-tradeable price P I+1

n,t ICP, interpolate and extrapolate for non-survey years
Tradable exp share �n OECD national accounts, (fitting for non-OECD countries)
Trade elasticity ✓i 4; 8.28; Industry-specific (Caliendo and Parro, 2014)
Elasticity of subst. in consumption 1

1� 2 (Levchenko and Zhang, 2016); 1 (Caliendo and Parro, 2014)
Elasticity of subst. in production �i 2
Tradeable consumption share !i

n Levchenko and Zhang (2016)
US industry-level TFP NBER-CES manufacturing industry database
Other country variables Penn World Table
Other bilateral variables CEPII gravity dataset
Industry-level TFP KLEMS database (EU-, Asia, World- KLEMS)
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Table A4: Convergence: Alternative Estimates of TFP

(1) (2) (3) (4) (5)

Country-specific Input-output Table
Benchmark ✓ = 4 Industry-specific ✓i

PPML OLS PPML OLS PPML

Industry-Level TFP: Data

Full Sample -0.309 -0.270 -0.347 -0.172 -0.182
(0.040)*** (0.037)*** (0.038)*** (0.036)*** (0.060)***

Non-OECD -0.351 -0.339 -0.389 -0.227 -0.266
(0.058)*** (0.054)*** (0.054)*** (0.047)*** (0.064)***

OECD -0.310 -0.254 -0.343 -0.126 -0.064
(0.059)*** (0.059)*** (0.057)*** (0.051)** (0.121)

Industry-Level TFP: Simulation

Full Sample -0.337 -0.298 -0.372 -0.191 -0.160
(0.020)*** (0.021)*** (0.021)*** (0.020)*** (0.013)***

Non-OECD -0.389 -0.359 -0.426 -0.206 -0.181
(0.026)*** (0.026)*** (0.028)*** (0.023)*** (0.018)***

OECD -0.265 -0.214 -0.280 -0.172 -0.129
(0.033)*** (0.040)*** (0.035)*** (0.035)*** (0.014)***

Trade Variables: Simulation

RCA -0.410 -0.387 -0.384 -0.800 -0.802
(0.031)*** (0.036)*** (0.031)*** (0.030)*** (0.028)***

⇡i
nm -0.102 -0.082 -0.100 -0.124 -0.139

(0.009)*** (0.009)*** (0.012)*** (0.011)*** (0.010)***

Exp. Capability -0.420 -0.345 -0.394 -0.876 -0.518
(0.034)*** (0.039)*** (0.034)*** (0.039)*** (0.030)***

Notes: (1) Growth rate of each variable is calculated between 1990–1995 and 2005-2010. The table

only reports the convergence parameter ↵ specified in Equation 23 using Method II; (2) Top and

bottom 1% observations in terms of growth rate are dropped; (3) Industry and country fixed e↵ects

are included in each regression; (4) Robust standard errors are reported in the parentheses. *, **,

and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table A5: Unconditional Convergence in RCA by Industry: 1970 - 2010

(1) (2) (3) (4)
Data Benchmark WIOD Patent Obs.

Food, tobacco -0.300 -0.424 -0.453 -0.395 51
(0.110)*** (0.116)*** (0.115)*** (0.119)***

Textiles -0.498 -0.459 -0.459 -0.433 49
(0.131)*** (0.178)*** (0.170)*** (0.181)**

Apparel, footwear -0.603 -0.149 -0.155 -0.142 35
(0.222)*** (0.164) (0.164) (0.162)

Wood -0.515 -0.584 -0.588 -0.585 48
(0.111)** (0.126)*** (0.124)*** (0.0128)***

Paper -0.753 -0.811 -0.894 -0.827 49
(0.101)*** (0.106)*** (0.104)*** (0.108)***

Printing, Publishing -0.423 -0.705 -0.725 -0.714 49
(0.103)*** (0.137)*** (0.139)*** (0.134)***

Coke, petroleum -0.776 -0.627 -0.605 -0.643 51
(0.166)*** (0.147)*** (0.144)*** (0.152)***

Chemical -0.604 -0.548 -0.509 -0.538 43
(0.073)*** (0.145)*** (0.153)*** (0.151)***

Rubber, plastic -0.670 -0.706 -0.714 -0.686 48
(0.068)*** (0.068)*** (0.066)*** (0.073)***

Non-metallic mineral -0.596 -0.511 -0.506 -0.530 47
(0.057)*** (0.082)*** (0.083)*** (0.082)***

Basic metals -0.596 -0.839 -0.842 -0.842 42
(0.057)*** (0.123)*** (0.124)*** (0.124)***

Fabricated metal -0.627 -0.682 -0.666 -0.667 48
(0.071)** (0.107)*** (0.108)*** (0.111)***

Machinery, equipment -0.517 -0.986 -1.017 -0.905 41
(0.085)*** (0.102)*** (0.097)*** (0.108)***

Electronics -0.490 -0.946 -0.967 -0.925 40
(0.121)*** (0.102)*** (0.134)*** (0.137)***

Medical, precision -0.418 -0.397 -0.409 -0.396 33
(0.066)*** (0.172)** (0.171)** (0.169)**

Vehicles -0.577 -0.654 -0.677 -0.593 46
(0.080)*** (0.090)*** (0.087)*** (0.096)***

Other manufacturing -0.639 -0.702 -0.706 -0.697 47

(0.116)*** (0.148)*** (0.146)*** (0.150)***

Notes: (1) Calibration (Method III) is performed on the sample from 1970 to 2010 estimated using

country-specific TFP (2) Robust standard errors are reported in the parentheses. *, **, and ***

indicate significance at the 10%, 5%, and 1% levels, respectively.
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Table A6: Key Players: Direct Contribution to TFP Growth by Period

Simple Average (%) Weighted Average (%)
Top 5 “BRICS” Top 5 “BRICS”

1995 – 2000

USA 11.25 Brazil 2.23 USA 22.06 Brazil 1.93
Germany 7.94 Russia 1.71 Germany 21.14 Russia 0.97
Japan 7.81 India 1.57 Japan 9.11 India 0.91
UK 4.61 China 2.48 UK 4.61 China 3.64
Italy 4.08 S. Africa 1.04 Italy 4.08 S.Africa 0.43

2000 – 2005

USA 11.64 Brazil 2.00 USA 20.06 Brazil 1.73
Germany 7.44 Russia 0.97 Germany 17.93 Russia 0.44
Japan 6.76 India 1.75 Japan 7.62 India 1.18
Italy 5.72 China 3.44 Italy 5.27 China 4.72
UK 5.02 S. Africa 1.11 France 5.19 S.Africa 0.42

2005 – 2010

USA 10.98 Brazil 2.25 USA 19.43 Brazil 1.65
Germany 7.19 Russia 1.16 Germany 14.93 Russia 0.68
Japan 6.29 India 1.99 Japan 7.96 India 1.35
Italy 5.30 China 5.43 Italy 5.50 China 7.93
France 4.71 S. Africa 1.24 France 5.31 S.Africa 0.60

Note: This table covers the period from 1990 to 2010. Centrality measures are

calculated using di↵usion parameters obtained from the baseline calibration and

actual trade and production data. I obtain similar rankings if simulated trade and

production data is used instead.
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Table A7: Key Players: Degree Centrality

Cuto↵ ⇣ = 0.02 Cuto↵ ⇣ = 0.005
Top 5 “BRICS” Top 5 “BRICS”

USA 0.99 Brazil 0.19 USA 1.00 Brazil 0.44
Germany 0.97 Russia 0.04 Germany 1.00 Russia 0.07
Japan 0.94 India 0.14 Japan 1.00 India 0.26
Italy 0.86 China 0.53 UK 0.99 China 0.86
France 0.84 S. Africa 0.06 France 0.99 S.Africa 0.09

Cuto↵ ⇣ = 1e� 4 Cuto↵ ⇣ = 1e� 5
Country Industry Degree Country Industry Degree

USA Measurement 0.99 USA Measurement 1.00
Germany Measurement 0.99 Japan Measurement 1.00
Japan Measurement 0.97 USA Vehicles 0.99
UK Measurement 0.96 UK Printing 0.99
Japan Vehicles 0.96 Japan Vehicles 0.99
France Measurement 0.95 USA Other Manuf. 0.99
Switzerland Measurement 0.95 Germany Vehicles 0.99
USA Vehicles 0.95 China Other Manuf. 0.99
Germany Vehicles 0.95 Germany Measurement 0.99
France Vehicles 0.94 Switzerland Measurement 0.99

Note: This table covers the period from 1990 to 2010 using the di↵usion parameter obtained
from the baseline calibration (Method II). Country-level degree measure is normalized by N =
72 and industry-level degree measure is normalized by N ⇥ I = 1224.
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